Schrödinger’s Paradox and Nonlocality

  • Douglas L. Hemmick
  • Asif M. Shakur
Part of the SpringerBriefs in Physics book series (SpringerBriefs in Physics)


In the previous chapter, we reviewed the Einstein–Podolsky–Rosen paradox and Bell’s Theorem. EPR is a very powerful result, and when its logical content is distilled, this famous analysis leads to a striking conclusion—the existence of physical properties lying outside the purview of the quantum description.


Entangle State Hide Variable Perfect Correlation Bohmian Mechanic Quantum Nonlocality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Brown, H.R., Svetlichny, G.: Nonlocality and Gleason’s Lemma. Part I Deterministic Theories. Found. Phys. 20, 1379 (1990)Google Scholar
  2. 2.
    Heywood, P., Redhead, M.L.G.: Nonlocality and the Kochen-Specker Paradox. Found. Phys. 13, 481 (1983)Google Scholar
  3. 3.
    Aravind, P.K.: Bell’s theorem without inequalities and only two distant observers. Found. Phys. Lett. 15, 399–405 (2002)Google Scholar
  4. 4.
    Cabello, A.: Bell’s theorem without inequalities and only two distant observers. Phys. Rev. Lett. 86, 1911–1914 (2001)Google Scholar
  5. 5.
    Bassi, A., Ghirardi, G.C.: The Conway-Kochen Argument and relativistic GRW Models. Found. Phys. 37, 169 (2007). Physics archives: arXiv:quantph/610209Google Scholar
  6. 6.
    Tumulka, R.: Comment on ‘The Free Will Theorem’. Found. Phys. 37, 186–197 (2007). Physics archives: arXic:quant-ph/0611283Google Scholar
  7. 7.
    Goldstein, S., Tausk, D., Tumulka, R., Zanghí, N.: What does the free will theorem actually prove? Notices AMS 57(11):1451–1453 (2010) arXiv:0905.4641v1 [quant-ph]Google Scholar
  8. 8.
    Schrödinger, E.: Die gegenwA rtige Situation in der Quantenmechanik. Naturwissenschaften 23 807–812, 823–828, 844–849 (1935). The English translation of this work - ‘The present situation in quantum mechanics’ - appears. In: Proceedings of the American Philosophical Society 124, 323–338 (1980) (translated by J. Drimmer), and can also be found in [21, p. 152]Google Scholar
  9. 9.
    Schrödinger, E.: Discussion of probability relations between separated systems. Proc. Cambridge Phil. Soc. 31, 555 (1935)Google Scholar
  10. 10.
    Schrödinger, E.: Probability relations between separated systems. Proc. Cambridge Phil. Soc. 32, 446 (1936)Google Scholar
  11. 11.
    Bohm, D.: Quantum Theory. Prentice Hall, Englewood Cliffs (1951)Google Scholar
  12. 12.
    Einstein, A., Podolsky, B., Rosen, N.: Con quantum mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935). Reprinted in [21, p. 138]Google Scholar
  13. 13.
    Conway, J., Kochen, S.: “The Free Will Theorem” Found. Phys. 36(10); 1441–1473 (2006). Physics archives arXiv:quant-ph/0604079Google Scholar
  14. 14.
    Conway, J., Kochen, S.: The strong Free Will Theorem. Notices AMS 56(2), 226–232 Feb 2009Google Scholar
  15. 15.
    Peres, A.: Quantum Theory: Concepts and Methods. Springer, Heidelberg (1995)Google Scholar
  16. 16.
    Bell, J.S.: Bertlemann’s socks and the nature of reality Journal de Physique. Colloque C2, suppl. au numero 3, Tome 42 1981 pp. C2 41–61. Reprinted in [22, p. 139]Google Scholar
  17. 17.
    Bell, J.S.: On the problem of hidden variables in quantum mechanics. Rev. Modern Phys. 38 447–452 (1966). Reprinted in [22, p. 1] and [21, p. 397]Google Scholar
  18. 18.
    Bell, J.S.: On the impossible pilot wave. Found. Phys. 12 989–999 (1982) Reprinted in [22, p. 159]Google Scholar
  19. 19.
    Schilpp, P.A.: Albert Einstein: Philosopher-Scientist. Harper and Row, New York (1949)Google Scholar
  20. 20.
    Bell, J.S.: Quantum mechanics for cosmologists. p. 611 in: Quantum Gravity. vol. 2 Isham, C., Penrose, R., Sciama, D. (eds.) Clarendon Press, Oxford (1981). Reprinted in [22, p. 117]Google Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  1. 1.Boston DriveBerlinUSA
  2. 2.Department of PhysicsSalisbury UniversitySalisburyUSA

Personalised recommendations