ADSC: Application-Driven Storage Control for Energy Efficiency

  • Cinzia Cappiello
  • Alicia Hinostroza
  • Barbara Pernici
  • Mariagiovanna Sami
  • Ealan Henis
  • Ronen Kat
  • Kalman Meth
  • Marcello Mura
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6868)


While performance and quality of service are the main criteria for application data management on storage units, energy efficiency is increasingly being stated as an additional criterion for evaluation. Due to the increasing energy consumption of storage subsystems, improving their energy efficiency is an important issue. In this paper we present a novel approach to storage management whereby both mid-level (file placement) and low level (disk mode) aspects are controlled, in a tiered storage architecture. The proposed mechanism is based on policies, and it is implemented via fuzzy logic rules, in contrast to attempting to build a model of the storage subsystem. The inputs to the storage management system are high level (application), mid level (file system) and low level (disk access patterns) information. The effectiveness of our approach has been validated by means of a case study using a TPC-C benchmark modified to access file level data. Results from this simulation are presented.


Fuzzy Rule Finite State Machine Access Pattern Acoustic Mode High Tier 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Poess, M., Nambiar, R.O.: Energy cost, the key challenge of today’s data centers: A power consumption analysis of tpc-c results. In: VLDB (2008)Google Scholar
  2. 2.
    Zhu, Q., David, F.M., Devaraj, C.F., Li, Z., Zhou, Y., Cao, P.: In: Proc. of HPCA 2004. IEEE Computer Society, Washington, DC, USA (2004)Google Scholar
  3. 3.
    Gurumurthi, S., Sivasubramaniam, A., Kandemir, M., Franke, H.: DRPM: dynamic speed control for power management in server class disks. SIGARCH Comput. Archit. News 31, 169–181 (2003)CrossRefGoogle Scholar
  4. 4.
    Chen, D., Goldberg, G., Kahn, R., Kat, R.I., Meth, K.: Leveraging disk drive acoustic modes for power management. In: MSST (2010)Google Scholar
  5. 5.
    Bertoncini, M., Pernici, B., Salomie, I., Wesner, S.: GAMES: Green Active Management of Energy in IT Service centres. LNBIP. Springer, Heidelberg (2010)Google Scholar
  6. 6.
    INCITS 361-2002 (1410D): AT attachment - 6 with packet interface (ATA/ATAPI - 6) (2002)Google Scholar
  7. 7.
    Transaction Processing Performance Council: Tpc benchmark - standard specification, revision 5.11. Technical report (2010)Google Scholar
  8. 8.
    Benini, L., Bogliolo, A., De Micheli, G.: IEEE Transactions on Very Large Scale Integration (VLSI) SystemsGoogle Scholar
  9. 9.
    Mura, M., Paolieri, M., Negri, L., Sami, M.G.: Statecharts to SystemC: a high level hardware simulation approach. In: Proc. of GLVLSI, pp. 505–508. ACM Press, New York (2007)Google Scholar
  10. 10.
    Mura, M., Paolieri, M.: SC2: State Charts to System C: Automatic executable models generation. In: Proc. of FDL, Barcelona, Spain (2007)Google Scholar
  11. 11.
    Rosenthal, M.: Sales ranks for Amazon self publishing and trade books (2010),
  12. 12.
    Intel IA-64 Application Developer’s Architecture GuideGoogle Scholar
  13. 13.
    Culler, D.E., Singh, J.: Parallel Computer Architecture, a hardware-software approach. Morgan-Kauffman, San Francisco (1998)Google Scholar
  14. 14.
    Tivoli Storage Manager HSM for WindowsGoogle Scholar
  15. 15.
    Colarelli, D., Grunwald, D.: Massive arrays of idle disks for storage archives. In: Proc. of ACM/IEEE conference on High Performance Networking and Computing, pp. 1–11 (2002)Google Scholar
  16. 16.
    Pinheiro, E., Bianchini, R.: Energy conservation techniques for disk array-based servers. In: Proc. of ICS, pp. 68–78 (2004)Google Scholar
  17. 17.
    Storer, M.W., Greenan, K.M., Miller, E.L., Voruganti, K.: Pergamum: replacing tape with energy efficient, reliable, disk-based archival storage. In: Degano, P., Guttman, J., Martinelli, F. (eds.) FAST 2008. LNCS, vol. 5491, pp. 1–16. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  18. 18.
    Otoo, E., Pinar, A., Rotem, D., Tsao, S.C.: A file allocation strategy for energy-efficient disk storage systemsGoogle Scholar
  19. 19.
    Zhu, Q., Chen, Z., Tan, L., Zhou, Y., Keeton, K., Wilkes, J.: Hibernator: helping disk arrays sleep through the winter. In: Proc. of SOSP, pp. 177–190 (2005)Google Scholar
  20. 20.
    Douglis, F., Krishnan, P., Bershad, B.: Adaptive disk spin-down policies for mobile computers. In: Proc. of the 2nd USENIX Symposium on Mobile and Location-Independent Computing, pp. 121–137 (1995)Google Scholar
  21. 21.
    Li, X., Li, Z., David, F., Zhou, P., Zhou, Y., Adve, S., Kumar, S.: Performance directed energy management for main memory and disks. In: Proc. of ASPLOS, pp. 271–283. ACM Press, New York (2004)Google Scholar
  22. 22.
    Arpaci-Dusseau, A.C., Arpaci-Dusseau, R.H., Bairavasundaram, L.N., Denehy, T.E., Popovici, F.I., Prabhakaran, V., Sivathanu, M.: Semantically-smart disk systems: past, present, and future. SIGMETRICS Perform. Eval. Rev. 33, 29–35 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Cinzia Cappiello
    • 1
  • Alicia Hinostroza
    • 1
  • Barbara Pernici
    • 1
  • Mariagiovanna Sami
    • 1
  • Ealan Henis
    • 2
  • Ronen Kat
    • 2
  • Kalman Meth
    • 2
  • Marcello Mura
    • 3
  1. 1.Dip. di Elettronica e InformazionePolitecnico di MilanoMilanoItaly
  2. 2.IBM Haifa Research Lab, Haifa University CampusHaifaIsrael
  3. 3.University of LuganoLuganoSwitzerland

Personalised recommendations