Advertisement

Constraints in RDF

  • Waseem Akhtar
  • Álvaro Cortés-Calabuig
  • Jan Paredaens
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6834)

Abstract

RDF (Resource Description Framework) is a World Wide Web Consortium recommendation for specifying meta-data models on the web. RDF databases consist of triples in the form of subject-predicate-object, which are often conceptualized as defining a directed labeled graph. In this paper, we extend the basic model of RDF by introducing two types of integrity constraints, namely functional and equality generating constraints. Our formal framework is inspired and motivated by the importance of the corresponding constraints in the relational model. In the first part of the paper we present the formal notion of satisfaction for both types of constraints and introduce a mechanism to express functional constraints in terms of equality generating constraints, and we show that the converse is not possible. In the second part, we define an Armstrong-type scheme of rules for equality generating constraints and we prove that these rules form a sound and complete set. In addition, we present chase-like algorithms for both types of constraints that check whether a single constraint follows from a given set of constraints.

Keywords

Resource Description Framework Functional Constraint Integrity Constraint Deductive Rule Implication Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Angles, R., Gutierrez, C.: The Expressive Power of SPARQL. In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 114–129. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Armstrong, W.W.: Dependency structures of data base relationships. In: IFIP Congress, pp. 580–583 (1974)Google Scholar
  3. 3.
    Beeri, C., Fagin, R., Howard, J.H.: A complete axiomatization for functional and multivalued dependencies in database relations. In: Proceedings of the 1977 ACM SIGMOD International Conference on Management of Data, Toronto, Canada, August 3-5, pp. 47–61 (1977)Google Scholar
  4. 4.
    Beeri, C., Vardi, M.Y.: The implication problem for data dependencies. In: Even, S., Kariv, O. (eds.) ICALP 1981. LNCS, vol. 115, pp. 73–85. Springer, Heidelberg (1981)CrossRefGoogle Scholar
  5. 5.
    Bertossi, L.E.: Consistent query answering in databases. SIGMOD Record 35(2), 68–76 (2006)CrossRefGoogle Scholar
  6. 6.
    Buneman, P., Davidson, S.B., Fan, W., Hara, C.S., Tan, W.C.: Reasoning about keys for XML. Inf. Syst. 28(8), 1037–1063 (2003)CrossRefzbMATHGoogle Scholar
  7. 7.
    Buneman, P., Fan, W., Weinstein, S.: Path constraints in semistructured and structured databases. In: Proceedings of the Seventeenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (PODS), Seattle, Washington, June 1-3, pp. 129–138 (1998)Google Scholar
  8. 8.
    Calvanese, D., De Giacomo, G., Lenzerini, M.: Identification constraints and functional dependencies in description logics. In: Nebel, B. (ed.) IJCAI, pp. 155–160. Morgan Kaufmann, San Francisco (2001)Google Scholar
  9. 9.
    Chakravarthy, U.S., Grant, J., Minker, J.: Logic-based approach to semantic query optimization. ACM Transactions on Database Systems 15(2), 162–207 (1990)CrossRefGoogle Scholar
  10. 10.
    Chirkova, R., Fletcher, G.H.L.: Towards well-behaved schema evolution. In: 12th International Workshop on the Web and Databases, WebDB 2009, Providence, Rhode Island, USA, (June 28, 2009)Google Scholar
  11. 11.
    Codd, E.F.: A relational model of data for large shared data banks. Commun. ACM 13(6), 377–387 (1970)CrossRefzbMATHGoogle Scholar
  12. 12.
    Denecker, M., Cortés-Calabuig, A., Bruynooghe, M., Arieli, O.: Towards a logical reconstruction of a theory for locally closed databases. ACM Trans. Database Syst. 35(3) (2010)Google Scholar
  13. 13.
    Fan, W., Libkin, L.: On XML integrity constraints in the presence of DTDs. Journal of the ACM 49(3), 368–406 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Fan, W., Siméon, J.: Integrity constraints for XML. In: Proceedings of the Nineteenth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (PODS), Dallas, Texas, USA, May 15-17, pp. 23–34 (2000)Google Scholar
  15. 15.
    Gutierrez, C., Hurtado, C.A., Mendelzon, A.O.: Foundations of semantic web databases. In: Proceedings of the Twenty-third ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (PODS 2004), Paris, France, June 14-16, pp. 95–106 (2004)Google Scholar
  16. 16.
    Lausen, G., Meier, M., Schmidt, M.: Schmidt Sparqling constraints for RDF. In: Proceedings 11th International Conference on Extending Database Technology (EDBT 2008), Nantes, France, March 25-29, pp. 499–509 (2008)Google Scholar
  17. 17.
    Linked data. Obtainable via (2006), http://www.w3.org/DesignIssues/LinkedData.html
  18. 18.
    Lutz, C., Milicic, M.: Milicic Description logics with concrete domains and functional dependencies. In: de Mántaras, R.L., Saitta, L. (eds.) ECAI, pp. 378–382. IOS Press, Amsterdam (2004)Google Scholar
  19. 19.
    San Martín, M., Gutierrez, C.: Representing, Querying and Transforming Social Networks with RDF/SPARQL. In: Aroyo, L., Traverso, P., Ciravegna, F., Cimiano, P., Heath, T., Hyvönen, E., Mizoguchi, R., Oren, E., Sabou, M., Simperl, E. (eds.) ESWC 2009. LNCS, vol. 5554, pp. 293–307. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  20. 20.
    Muñoz, S., Pérez, J., Gutierrez, C.: Simple and efficient minimal rdfs. J. Web Sem. 7(3), 220–234 (2009)CrossRefGoogle Scholar
  21. 21.
    Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of SPARQL. ACM Trans. Database Syst. 34(3) (2009)Google Scholar
  22. 22.
    Quilitz, B., Leser, U.: Querying Distributed RDF Data Sources with SPARQL. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 524–538. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  23. 23.
    Semantic bioinformatics (2006), http://esw.w3.org/Semantic_Bioinformatics
  24. 24.
  25. 25.
  26. 26.
    RDF semantics (2004), http://www.w3.org/TR/rdf-mt/
  27. 27.
    Reiter, R.: On integrity constraints. In: Vardi, M. (ed.) Proceedings of Conference on Theoretical Aspects o Reasoning about Knowledge, pp. 97–111 (1988)Google Scholar
  28. 28.
    Sadri, F., Ullman, J.D.: The interaction between functional dependencies and template dependencies. In: Proceedings of the 1980 ACM SIGMOD International Conference on Management of Data, Santa Monica, California, May 14-16, pp. 45–51 (1980)Google Scholar
  29. 29.
    Schmidt, M., Meier, M., Lausen, G.: Foundations of SPARQL query optimization. In: Proceedings 13th International Conference Database Theory, ICDT 2010 (2010)Google Scholar
  30. 30.
    SPARQL protocol and RDF query language (SPARQL). Obtainable via (2008), http://www.w3.org/TR/rdf-sparql-query/
  31. 31.
    Thalheim, B.: Integrity constraints in (Conceptual) database models. In: Kaschek, R., Delcambre, L. (eds.) The Evolution of Conceptual Modeling. LNCS, vol. 6520, pp. 42–67. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  32. 32.
    Vincent, M.W., Liu, J.: Functional dependencies for XML. In: Zhou, X., Zhang, Y., Orlowska, M.E. (eds.) APWeb 2003. LNCS, vol. 2642, pp. 22–34. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  33. 33.
    Winslett, M.: A model-based approach to updating databases with incomplete information. ACM Trans. Database Syst. 13(2), 167–196 (1988)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Waseem Akhtar
    • 1
  • Álvaro Cortés-Calabuig
    • 2
  • Jan Paredaens
    • 2
  1. 1.Vrije Universiteit BrusselBelgium
  2. 2.University of AntwerpBelgium

Personalised recommendations