Skip to main content

Curved Bridge Design

  • Conference paper

Abstract

This paper presents a novel approach for the interactive design of linear structures in space. A method is introduced, that provides a maximum of formal freedom in the design of funicular, hence efficient, structures. For a given deck geometry, defined by a design driving NURBS curve via parametric modeling techniques, a tailored relaxation routine allows for controlled, real-time form-finding of the spatial funicular. Subsequently, the equilibrium of the deck is constructed using techniques from graphic statics, combined with a least-square optimization technique. Finally, the method is applied to a design example.

Keywords

  • Graphic Static
  • Bridge Deck
  • NURBS Curve
  • Tension Cable
  • Nodal Mass

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-23435-4_17
  • Chapter length: 8 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   189.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-23435-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   249.99
Price excludes VAT (USA)
Hardcover Book
USD   299.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barnes, M.R.: Form Finding and Analysis of Tension Structures by Dynamic Relaxation. Int. J. Space Struct. 14, 89–104 (1999), doi:10.1260/0266351991494722

    CrossRef  Google Scholar 

  2. Baus, U., Schlaich, M.: Footbridges, pp. 105–121. Birkhäuser, Basel (2007)

    Google Scholar 

  3. Frampton, K., Webster, A.C., Tischhauser, A.: Calatrava Bridges, pp. 206–213. Birkhäuser, Basel (1996)

    Google Scholar 

  4. Heyman, J.: Basic Structural Theory, pp. 26–38. University Press, Cambridge (2008)

    CrossRef  Google Scholar 

  5. Kara, H.: Design Engineering. Barcelona, Actar 9 (2008)

    Google Scholar 

  6. Kilian, A.: Linking digital hanging chain models to fabrication. In: Proc AIA/ACADIA, vol. 23, pp. 110–125 (2004)

    Google Scholar 

  7. Lachauer, L., Kotnik, T.: Geometry of Structural Form. In: Ceccato, C., Hesselgren, L., Pauly, M., Pottmann, H., Wallner, J. (eds.) Advances in Architectural Geometry, pp. 193–203. Springer, Heidelberg (2010)

    CrossRef  Google Scholar 

  8. Lachauer, L., Junhjohann, H., Kotnik, T.: Interactive Parametric Tools for Structural Design. In: Proc IABSE-IASS (2011); accepted for publication

    Google Scholar 

  9. Laffranchi, M.: Zur Konzeption gekrmmter Brcken, pp. 23–30. Dissertation, ETH Zurich (1999)

    Google Scholar 

  10. McNeel, R.: Rhinoceros NURBS modeling for Windows. Computer software (2011a), http://www.rhino3d.com/

  11. McNeel, R.: Grasshopper generative modeling for Rhino. Computer software (2011b), http://www.grasshopper3d.com/

  12. Muttoni, A., Schwartz, J., Thrlimann, B.: Design of Concrete Structures with Stress fields. Birkhäuser, Basel (1996)

    CrossRef  Google Scholar 

  13. Muttoni, A.: The Art of Structures. EPFL Press, Lausanne (2011)

    Google Scholar 

  14. Oxman, R., Oxman, R.: Introduction. In: Oxman, R., Oxman, R. (eds.) The New Structuralism: Design, Engineering and Architectural Technologies. John Wiley, Chichester (2010)

    Google Scholar 

  15. Picon, A.: Digital Culture in Architecture, pp. 8–14. Birkhäuser, Basel (2010)

    Google Scholar 

  16. Rappaport, N.: Support and Resist: Structural Engineering and Design Innovation, pp. 7–11. Monacelli Press, New York (2007)

    Google Scholar 

  17. Schwartz, J.: Tragwerksentwurf I. Lecture Notes, ETH Zurich (2009)

    Google Scholar 

  18. Strasky, J.: Stress ribbon and cable-supported pedestrian bridges, pp. 155–160. Thomas Telford, London (2005)

    CrossRef  Google Scholar 

  19. Zalewski, W., Allen, E.: Shaping Structures, pp. 377–400. John Wiley, New York (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lachauer, L., Kotnik, T. (2011). Curved Bridge Design. In: Gengnagel, C., Kilian, A., Palz, N., Scheurer, F. (eds) Computational Design Modelling. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23435-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23435-4_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23434-7

  • Online ISBN: 978-3-642-23435-4

  • eBook Packages: EngineeringEngineering (R0)