Advertisement

Curved Bridge Design

  • Lorenz Lachauer
  • Toni Kotnik

Abstract

This paper presents a novel approach for the interactive design of linear structures in space. A method is introduced, that provides a maximum of formal freedom in the design of funicular, hence efficient, structures. For a given deck geometry, defined by a design driving NURBS curve via parametric modeling techniques, a tailored relaxation routine allows for controlled, real-time form-finding of the spatial funicular. Subsequently, the equilibrium of the deck is constructed using techniques from graphic statics, combined with a least-square optimization technique. Finally, the method is applied to a design example.

Keywords

Graphic Static Bridge Deck NURBS Curve Tension Cable Nodal Mass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barnes, M.R.: Form Finding and Analysis of Tension Structures by Dynamic Relaxation. Int. J. Space Struct. 14, 89–104 (1999), doi:10.1260/0266351991494722CrossRefGoogle Scholar
  2. 2.
    Baus, U., Schlaich, M.: Footbridges, pp. 105–121. Birkhäuser, Basel (2007)Google Scholar
  3. 3.
    Frampton, K., Webster, A.C., Tischhauser, A.: Calatrava Bridges, pp. 206–213. Birkhäuser, Basel (1996)Google Scholar
  4. 4.
    Heyman, J.: Basic Structural Theory, pp. 26–38. University Press, Cambridge (2008)CrossRefGoogle Scholar
  5. 5.
    Kara, H.: Design Engineering. Barcelona, Actar 9 (2008)Google Scholar
  6. 6.
    Kilian, A.: Linking digital hanging chain models to fabrication. In: Proc AIA/ACADIA, vol. 23, pp. 110–125 (2004)Google Scholar
  7. 7.
    Lachauer, L., Kotnik, T.: Geometry of Structural Form. In: Ceccato, C., Hesselgren, L., Pauly, M., Pottmann, H., Wallner, J. (eds.) Advances in Architectural Geometry, pp. 193–203. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Lachauer, L., Junhjohann, H., Kotnik, T.: Interactive Parametric Tools for Structural Design. In: Proc IABSE-IASS (2011); accepted for publicationGoogle Scholar
  9. 9.
    Laffranchi, M.: Zur Konzeption gekrmmter Brcken, pp. 23–30. Dissertation, ETH Zurich (1999)Google Scholar
  10. 10.
    McNeel, R.: Rhinoceros NURBS modeling for Windows. Computer software (2011a), http://www.rhino3d.com/
  11. 11.
    McNeel, R.: Grasshopper generative modeling for Rhino. Computer software (2011b), http://www.grasshopper3d.com/
  12. 12.
    Muttoni, A., Schwartz, J., Thrlimann, B.: Design of Concrete Structures with Stress fields. Birkhäuser, Basel (1996)CrossRefGoogle Scholar
  13. 13.
    Muttoni, A.: The Art of Structures. EPFL Press, Lausanne (2011)Google Scholar
  14. 14.
    Oxman, R., Oxman, R.: Introduction. In: Oxman, R., Oxman, R. (eds.) The New Structuralism: Design, Engineering and Architectural Technologies. John Wiley, Chichester (2010)Google Scholar
  15. 15.
    Picon, A.: Digital Culture in Architecture, pp. 8–14. Birkhäuser, Basel (2010)Google Scholar
  16. 16.
    Rappaport, N.: Support and Resist: Structural Engineering and Design Innovation, pp. 7–11. Monacelli Press, New York (2007)Google Scholar
  17. 17.
    Schwartz, J.: Tragwerksentwurf I. Lecture Notes, ETH Zurich (2009)Google Scholar
  18. 18.
    Strasky, J.: Stress ribbon and cable-supported pedestrian bridges, pp. 155–160. Thomas Telford, London (2005)CrossRefGoogle Scholar
  19. 19.
    Zalewski, W., Allen, E.: Shaping Structures, pp. 377–400. John Wiley, New York (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Lorenz Lachauer
    • 1
  • Toni Kotnik
    • 1
  1. 1.Structural DesignETH ZurichSwitzerland

Personalised recommendations