Advertisement

GeneRisk pp 21-49 | Cite as

Ökologische Wirkungspfadanalyse: Bt-Mais in der Umwelt

  • Broder BrecklingEmail author
  • Simone Böckmann
  • Hauke Reuter
Chapter
Part of the Umweltnatur- & Umweltsozialwissenschaften book series (UMWELTNATUR)

Zusammenfassung

Gentechnische Veränderung wirkt auf molekularer Ebene. Primäres Ziel des Eingriffs ist ein Effekt auf einer höheren Ebene, der des Organismus. Er soll Eigenschaften aufweisen, die im Rahmen der konventionellen Züchtung nicht oder nicht so einfach erreichbar sind. Da beim Anbau von GVO die nähere und weitere Umgebung betroffen ist, entsteht ein Wirkungszusammenhang, der von der molekularen Ebene bis zur makroskopischen, landschaftlichen bzw. regionalen Ebene reichen kann. Die Beziehungen zu analysieren, die dabei eine Rolle spielen, ist Gegenstand der Wirkungspfadanalyse im Rahmen der Risikoabschätzung.

Zitierte Literatur

  1. Abel CA, Adamczyk JJ Jr (2004) Relative concentration of Cry1Ab in maize leaves and cotton bolls with diverse chlorophyll content and corresponding larval development of fall armyworm (Lepidoptera: Noctuidae) and southwestern corn borer (Lepidoptera: Crambidae) on maize whorl leaf profiles. J Econ Entomol 97:1737–1744PubMedCrossRefGoogle Scholar
  2. Alcalde E (2003) Introduction to the co-existence of GM and non-GM maize. In: Boelt B (ed) Proceedings 1st European conference on the co-existence of genetically modified crops with conventional and organic crops. GMCC-03 13th–14th November, 2003 Helsingør, Denmark. Published by the Danish Institute of Agricultural Sciences, Research Centre Flakkebjerg DK-4200 Slagelse, Denmark, pp 71–73. http://xwww.agrsci.dk/gmcc-03/gmcc_proceedings.pdf
  3. Anderson PL, Hellmich RL, Sears MK, Sumerford DV, Lewis LC (2004) Effects of Cry1Ab-expressing corn anthers on monarch butterfly larvae. Environ Entomol 33:1109–1115CrossRefGoogle Scholar
  4. Andow DA, Zwahlen C (2006) Assessing environmental risks of transgenic plants. Ecol Lett 9:196–214PubMedCrossRefGoogle Scholar
  5. Arpas K, Toth F, Kiss J (2004) Analysis of web content of Theridion impressum L. Koch (Araneae: Theridiidae) in BT (DK440BTY, MON810, Cry1Ab) and isogenic (DK440) maize. In: Romeis J, Bigler F (eds) Proceedings of the Meeting “Ecological Impact of Genetically Modified Organisms” at Prague (Czech Republic), 26–29 November 2003. Working Group “GMOs in Integrated Production”. IOBC/wprs Bulletin 27:23–29Google Scholar
  6. Bates SL, Zhao JZ, Roush RT, Shelton AM (2005) Insect resistance management in GM crops: past, present and future. Nat Biotechnol 23:57–62PubMedCrossRefGoogle Scholar
  7. Benbrook CM (2004) Genetically engineered crops and pesticide use in the United States: the first nine years. BioTech InfoNet Tech Pap 7:1–53Google Scholar
  8. Bourguet D, Chaufaux J, Micoud A, Delos M, Naibo B, Bombarde F, Marque G, Eychenne N, Pagliarr C (2002) Ostrina nubilalis parasitism and the field abundance of non-target insects in transgenic Bacillus thuringiensis corn (Zea mays). Environ Biosaf Res 1:49–60CrossRefGoogle Scholar
  9. Brauner R, Moch K, Christ H (2004) Aufbereitung des Wissenstandes zu Auskreuzungsdistanzen. Öko-Institut e.V., Freiburg, pp 1–73Google Scholar
  10. Breckling B, Middelhoff U, Borgmann P, Menzel G, Brauner R, Born A, Laue H, Schmidt G, Schröder W, Wurbs A, Glemnitz M (2004) Generische Erfassungs- und Extrapolationsmethoden der Rapsausbreitung (Brassica napus L.). – Bremen (Abschlussbericht zum GenEERA-Verbund-Projekt im BMBF-Förderschwerpunkt Biologische Sicherheitsforschung), Förderkennzeichen 0312637A,B,C,D, 684 S.Google Scholar
  11. Bruinsma M, Kowalchuk GA, van Veen JA (2003) Effects of genetically modified plants on microbial communities and processes in soil. Biol Fertil Soils 37:329–337Google Scholar
  12. Brunet Y, Foueillassar X, Audran A, Garrigou D, Dayau S, Tardieu L (2003) Evidence for long-range transport of viable maize pollen. In: Boelt B (ed) Proceedings 1st European conference on the co-existence of genetically modified crops with conventional and organic crops. GMCC-03 13th–14th November, 2003 Helsingør, Denmark. Published by the Danish Institute of Agricultural Sciences, Research Centre Flakkebjerg DK-4200 Slagelse, Denmark, pp 74–76Google Scholar
  13. Cartagena Protocol on Biosafety TO THE CONVENTION ON BIOLOGICAL DIVERSITY (2000) Text and annexes. Montreal, pp 1–19. http://www.biodiv.org/doc/legal/cartagena-protocol-en.pdf
  14. CEC Commission for Environmental Co-operation (2004) Maize and biodiversity. The effects of transgenic maize in Mexico. Key findings and recommendations. Quebec, pp 1–50. http://www.cec.org/files/PDF//Maize-and-Biodiversity_en.pdf
  15. Dale PJ, Clarke B, Fontes EMG (2002) Potential for the environmental impact of transgenic crops. Nat Biotechnol 20:567–574PubMedCrossRefGoogle Scholar
  16. DEFRA (2001) Review of knowledge of the potential impacts of GMOs on organic agriculture. CSG 15. Final Project Report. London, pp 1–69. http://www.defra.gov.uk/corporate/publications/pubcat/pesticides.htm
  17. Devos Y, Reheul D, De Schrijver A (2005) The co-existence between transgenic and non-transgenic maize in the European Union: a focus on pollen flow and cross-fertilization. Environ Biosaf Res 4:71–87CrossRefGoogle Scholar
  18. Directive 2001/18/EC of the European Parliament and of the Council on the deliberate release onto the environment of genetically modified organisms (12 März 2001). Official Journal of the European Communities. L 106, 17.4.2001. http://europa.eu.int/eur-lex/pri/en/oj/dat/2001/1_106/1_10620010417en00010039.pdf
  19. Dolezel M, Heissenberger A, Gaugitsch H (2005) Ökologische Effekte von gentechnisch verändertem Mais mit Insektizidresistenz und/oder Herbizidresistenz. Umweltbundesamt Wien Rote Reihe des Bundesministeriums für Gesundheit und Frauen. Sektion IV. Band 6/05. Wien, pp 1–64Google Scholar
  20. Donegan KK, Palm CJ, Fieland VJ, Porteous LA, Ganio LM, Schaller DL, Bucao LQ, Seidler RJ (1995) Changes in levels, species and DNA fingerprints of soil microorganisms associated with cotton expressing the Bacillus thuringiensis var. kurstaki endotoxin. Appl Soil Ecol 2:111–124CrossRefGoogle Scholar
  21. Donegan KK, Schaller DL, Stone JD, Ganio LM, Reed G, Hamm PB, Seidler R (1996) Microbioal populations, fungal species diversity and plant pathogen levels in field plots of potato plants expressing Bacillus thuringiensis var. tenebrionis endotoxin. Transgenic Res 5:25–35CrossRefGoogle Scholar
  22. Dutton A, Klein H, Romeis J, Bigler F (2002) Uptake of Bt-toxin by herbivores feeding on transgenic maize and consequences for the predator Crysoperla carnea. Ecol Entomol 27:441–447CrossRefGoogle Scholar
  23. Dutton A, Obrist L, Alessandro D, Diener L, Müller M, Romeis J, Bigler F (2004) Tracing Bt-toxin in transgenic maize to assess the risks on non-target arthropods. In: Romeis J, Bigler F (eds) Proceedings of the Meeting “Ecological Impact of Genetically Modified Organisms” at Prague (Czech Republic), 26–29 November 2003. Working Group “GMOs in Integrated Production”. IOBC/wprs Bulletin 27:57–63Google Scholar
  24. Eastham K, Sweet J (2002) Genetically modified organisms (GMOs): The significance of gene flow through pollen transfer. European Environment Agency, Copenhagen. Environ Issue Rep 28:1–75Google Scholar
  25. Eckert J, Gathmann A, Schuphan I (2004) Auswirkungen des Anbaus von Bt-Mais auf Nichtzielorganismen: Thripse und ihre Gegenspieler. Mitt Dtsch Ges Allg Angew Entomol 14:439–442Google Scholar
  26. EFSA (2005) Guidance document of the scientific panel on genetically modified organisms for the risk assessment of genetically modified plants and derived food and feed. EFSA J 99:1–94Google Scholar
  27. Einspannier R, Lutz B, Rief S, Berezina O, Zverlov V, Schwartz W, Mayer J (2004) Tracing residual recombinant feed molecules during digestion and rumen bacterial diversity in cattle fed transgene maize. Eur Food Res Technol 218:269–273CrossRefGoogle Scholar
  28. Emberlin J, Adams-Groom B, Tidmarsh J (1999) The dispersal of maize (Zea mays) pollen. A report based on evidence available from publications and internet sites. A report commissioned by the UK Soil Association: National Pollen Research Unit, University College Worcester, Worcester, UKGoogle Scholar
  29. Escher N, Käch B, Nentwig W (2000) Decomposition of transgenic Bacillus thuringiensis maize by microorganisms and woodlice Porcellio scaber (Crustacea: Isopoda). Basic Appl Ecol 1:161–169CrossRefGoogle Scholar
  30. Felke M, Langenbruch G-A (2005) Auswirkungen des Pollens von transgenem Bt-Mais auf ausgewählte Schmettelingslarven. Bfn-Skipten 157:1–143Google Scholar
  31. Firbank LG (2003) The Farm Scale Evaluations of spring–sown genetically modified crops. Introduction. Philos Trans R Soc B Biol Sci 358:1777–1778CrossRefGoogle Scholar
  32. Freier B, Schorling M, Traugott M, Juen A, Volkmar C (2004) Results of a 4-year plant survey and pitfall trapping in Bt maize and conventional maize fields regarding the occurrence of selected arthropoda taxa. In: Romeis J, Bigler F (eds) Proceedings of the Meeting “Ecological Impact of Genetically Modified Organisms” at Prague (Czech Republic), 26–29 November 2003. Working Group “GMOs in Integrated Production”. IOBC/wprs Bulletin 27:79–84Google Scholar
  33. Gathmann A, Wirooks L, Hothorn LA, Bartsch D, Schuphan I (2006) Impact of Bt maize pollen (MON810) on lepidopteran larvae living on accompanying weeds. Mol Ecol 15:2677–2685PubMedCrossRefGoogle Scholar
  34. GM Science Review Panel (2003) An open review of the science relevant to GM corps and food based on interests and concerns of the public. http://www.bis.gov.uk/files/file15655.pdf
  35. Gould F (1998) Sustainability of transgenic insecticidal cultivars: integrating pest genetics and ecology. Annu Rev Entomol 43:701–726PubMedCrossRefGoogle Scholar
  36. Halsey ME, Remund KM, Davis CA, Qualls MQ, Eppard PJ, Berberich SA (2005) Isolation of maize from pollen-mediated gene flow by time and distance. Crop Sci Soc Am 45:2172–2185CrossRefGoogle Scholar
  37. Hanley AV, Huang ZY, Pett WL (2003) Effects of dietary transgenic Bt corn pollen on larvae of Apis mellifera and Galleria mellonella. J Agr Res 42:77–81Google Scholar
  38. Hansen LC, Obrycki J, Obrycki JJ (2000) Field deposition of Bt transgenic corn pollen: lethal effects on the monarch butterfly. Oecologica 125:241–248CrossRefGoogle Scholar
  39. Harwood JD, Wallin WG, Obrycki JJ (2005) Uptake of Bt endotoxins by nontarget herbivores and higher order arthropod predators: molecular evidence from a trangenic corn agroecosystem. Mol Ecol 14:2815–2823PubMedCrossRefGoogle Scholar
  40. Hellmich RL, Blair DS, Sears MK, Stanley-Horn DE, Daniels MJ, Mattila HR, Spencer T, Bidne KG, Lewis LC (2001) Monarch larvae sensitivity to Bacillus thuringiensis- purified proteins and pollen. Proc Natl Acad Sci USA (PNAS) 98:11925–11930CrossRefGoogle Scholar
  41. Henry C, Morgan D, Weekes R, Daniels R, Boffey C (2003) Farm scale evaluations of GM crops: monitoring gene flow from GM crops to non-GM equivalent crops in the vicinity. Part I: Forage Maize. Final Report Central Science Laboratory, Sand Hutton, York, YO41 1LZ. Centre for Ecology and Hydrology, Dorchester, Dorset DT28ZDGoogle Scholar
  42. Hilbeck A (2001) Implications of transgenic, insecticidal plants for insect and plant biodiversity. Perspect Plant Ecol Evol Systemat 4:43–61CrossRefGoogle Scholar
  43. Hilbeck A, Baumgartner M, Fried PM, Bigler F (1998) Effects of transgenic Bacillus thuringiensis corn-fed prey on mortality and development time of immature Chrysoperla carnea (Neuroptera: Chrysopidae). Entomol Soc Am 27:480–487Google Scholar
  44. Hofmann F, Janicke L, Janicke U, Wachter R, Kuhn U (2008) Modellrechnungen zur Ausbreitung von Maispollen unter Worst-Case Annahmen mit Vergleich von Freilandmessdaten. Gutachten für das Bundesamt für Naturschutz. Ökollogie Büro, Bremen, pp 1–47 http://www.bfn.de/fileadmin/MDB/documents/service/Hofmann_et_al_2009_Maispollen_WorstCase_Modell.pdf
  45. Hofmann F, Schlechtriemen U, Wosniok W, Foth M (2005) GVO-Pollenmonitoring – Technische und biologische Pollenakkumulatoren und PCR-Screening für ein Monitoring von gentechnisch veränderten Organismen. BfN-Skripte 139:1–275Google Scholar
  46. Ingram J (2000) Report on the separation distances required to ensure cross pollination is below specified limits in non-seed crops of sugar beet, maize and oilseed rape. Ministry of Agriculture, Fisheries and Food. Projekt No RGO123. National Institute of Agricultural Botany Huntingdon Road Cambridge UK, pp 1–37Google Scholar
  47. Ives AR, Andow DA (2002) Evolution of resistance to Bt crops: directional selection in structured environments. Ecol Lett 5:792–801CrossRefGoogle Scholar
  48. Jarosz N, Loubet B, Durand B, Foueillassar X, Huber L (2005) Variations in maize pollen emission and deposition in relation to microclimate. Eviron Sci Technol 39:4377–4384CrossRefGoogle Scholar
  49. Jesse LCH, Obrycki JJ (2000) Field deposition of Bt transgenic corn pollen: lethal effects on the monarch butterfly. Oecologica 125:241–248CrossRefGoogle Scholar
  50. Jones M, Brooks J (1950) Effectiveness of distance and border rows in preventing outcrossing in corn. Okla Agric Exp Stn Tech Bull T-38:3–18Google Scholar
  51. Jones M, Brooks J (1952) Effect of tree barriers on outcrossing in corn. Okla Agric Exp Stn Tech Bull T-45:3–11Google Scholar
  52. Kawata M, Ishikawa T, Murakami K (2008) Dispersal and persistence of genetically modified oilseed rape around Japanese harbours. In: Schröder W, Schmidt G (eds) Implications of GM-crop cultivation – series. Environ Sci Pollut Res 16:120–126Google Scholar
  53. Kuparinen A, Schurr F, Tackenberg O, O’Hara R (2007) Air mediated pollen flow from genetically modified to conventional crops. Ecol Appl 17:431–440PubMedCrossRefGoogle Scholar
  54. Lang A, Vojtech E (2006) The effects of pollen consumption of transgenic Bt maize on the common swallowtail, Papilio machaon L. (Lepidoptera, Papilionidae). Basic Appl Ecol 7:296–306CrossRefGoogle Scholar
  55. Losey JE, Rayor LS, Carter Me (1999) Transgenic pollen harms monarch larvae. Nature 299:214CrossRefGoogle Scholar
  56. Lövei GL, Arpaia S (2005) The impact of transgenic plants on natural enemies: a critical review of laboratory studies. Entomol Exp Appl 114:1–15CrossRefGoogle Scholar
  57. Ludy C, Lang A (2006) Bt maize pollen exposure and impact on the garden spider, Araneus diadematus. Entomol Exp Appl 118:145–156CrossRefGoogle Scholar
  58. Lumbierres B, Albajes R, Pons X (2004) Transgenic Bt maize and Rhopalosiphum padi (Hom., Aphididae) performance. Ecol Entomol 29:309–317CrossRefGoogle Scholar
  59. Luna V, Figueroa M, Baltazar B, Gomez L, Townsend R, Schoper J (2001) Maize pollen longevity and isolation distance requirements for effective pollen control. Crop Sci 41:1551–1557CrossRefGoogle Scholar
  60. Ma BL, Subedi KD, Reid LM (2004) Extent of cross-fertilization in maize by pollen from neighboring transgenic hybrids. Crop Sci Soc Am 44:1273–1282CrossRefGoogle Scholar
  61. Mack RN, Simberloff D, Lonsdale WM, Evans H, Clout M, Bazzaz FA (2000) Biotic invasions: causes, epidemiology, global consequences, and control. Ecol Appl 10:689–710CrossRefGoogle Scholar
  62. Malone LA, Pham-Delegue M-H (2001) Effects of transgene products on honey bees (Apis mellifera) and bumblebees (Bombus sp.). Apidologie 32:287–304CrossRefGoogle Scholar
  63. Marquard E, Durka W (2005) Auswirkungen des Anbaus gentechnisch veränderter Pflanzen auf Umwelt und Gesundheit: Potentielle Schäden und Monitoring. UFZ-Umweltforschungszentrum Leipzig-Halle, pp 1–194Google Scholar
  64. Marvier M, Van Acker RC (2005) Can crops transgenes be kept on a leash? Front Ecol Environ 3:99–106CrossRefGoogle Scholar
  65. Meier MS, Hilbeck A (2001) Influence of transgenic Bacillus thuringiensis corn-fed prey on prey preference of immature Chrysoperla carnea (Neuroptera: Chrysopidae). Basic Appl Ecol 2:35–44CrossRefGoogle Scholar
  66. Meier-Bethke S, Schiemann J (2003) Effect of varying distances and intervening maize fields on outcrossing rates of transgenic maize. In: Boelt B (ed) Proceedings 1st European conference on the co-existence of genetically modified crops with conventional and organic crops. GMCC-03 13th–14th November, 2003 Helsingør, Denmark. Published by the Danish Institute of Agricultural Sciences, Research Centre Flakkebjerg DK-4200 Slagelse, Denmark, pp 77–78Google Scholar
  67. Meissle M, Lang A (2005) Comparing methods to evaluate the effects of Bt maize and insecticide on spider assemblages. Agric Ecosyst Environ 107:359–370CrossRefGoogle Scholar
  68. Menzel G (2006) Verbreitungsdynamik und Auskreuzungspotential von Brassica napus L. (Raps) im Großraum Bremen. GCA-Verlag, WaabsGoogle Scholar
  69. Messean A, Angevin F, Gomez-Barbero M, Menrad K, Rodriguez-Cerezo E (2006) New case studies on the coexistence of GM and non-GM crops in European agriculture. Institut National de la Recherche Agronomique (INRA), Eco-innov Unit, Grignon, France. University of Applied Sciences of Weihenstephan, Science Centre Straubing, Germany. Institute for Prospective Technological Studies (IPTS), Joint Research Centre (JRC), European Commission Technical Report Series, EUR 22102 ENGoogle Scholar
  70. Messeguer J (2003) Gene flow assessment in transgenic plants. Plant Cell Tiss Org 73:201–212CrossRefGoogle Scholar
  71. Mulder C, Wouterse M, Raubuch M, Roelofs W, Rutgers M (2006) Can transgenic maize affect soil microbial communities? PLoS Comput Biol 2(9):e128. doi:10.1371/journal.pcbi.0020128PubMedCrossRefGoogle Scholar
  72. Müller W (2001) Handbuch zu Monitoring und Resistentmanagement für Bt-Mais. UBA-Monographie Band 144Google Scholar
  73. Myers JH, Simberloff D, Kuris AM, Carey JR (2000) Eradication revisited: dealing with exotic species. Trends Ecol Evol 15:316–320PubMedCrossRefGoogle Scholar
  74. Obrist LB, Dutton A, Albajes R, Bigler R (2006a) Exposure of arthropod predators to Cry1Ab toxin in Bt maize fields. Ecol Entomol 31:143–154CrossRefGoogle Scholar
  75. Obrist LB, Klein H, Dutton A, Bigler F (2006b) Assessing the effects of Bt maize on the predatory mite Neoseiulus cucumeris. Exp Appl Acarol 38:125–139PubMedCrossRefGoogle Scholar
  76. Obrist LB, Dutton A, Romeis J, Bigler F (2006c) Biological activity of Cry1Ab toxin expressed by Bt maize following ingestion by herbivorous arthropods and exposure of the predator Chrysoperla carnea. BioControl 51:31–48CrossRefGoogle Scholar
  77. OECD (2002) Consensus document on compositional considerations for new varieties of maize (Zea Mays): key food and feed nutritiens, anti-nutritients and secondary plant metabolites. OECD Environmental Health and Safety Publications. Series on the Safety of Novel Foods and Feeds 6:1–42. http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=ENV/JM/MONO%282002%2925&docLanguage=En
  78. Ortiz-Garcia S, Ezcurra E, Schoel B, Acevedo F, Soberon J, Snow AA (2005) Absence of detectable transgenes in local landraces of maize in Oaxaca, Mexico (2003–2004). Proc Natl Acad Sci USA (PNAS) 102:12338–12343CrossRefGoogle Scholar
  79. Pfanzagl B (1999) Begleituntersuchungen bei gentechnisch veränderten Pflanzen. Sicherheitsforschung, Ökologische Begleitforschung und Monitoring. Umweltbundesamt Monographie M-114, WienGoogle Scholar
  80. Pilson D, Prendeville HR (2004) Ecological effects of transgenic crops and the escape of transgenes into wild populations. Annu Rev Ecol Evol Syst 35:149–179CrossRefGoogle Scholar
  81. Quist D, Chapela ICH (2001) Transgenic DNA introgressed into traditional maize landraces in Oaxaca, Mexico. Nature 414:541–543PubMedCrossRefGoogle Scholar
  82. Raps A, Kehr J, Gugerli P, Moar WJ, Bigler F, Hilbeck A (2001) Immunological analysis of phloem sap of Bacillus thuringiensis corn and of the nontarget herbivore Rhopalosiphum padi (Homoptera: Aphididae) for the presence of Cry1Ab. Mol Ecol 10:525–533PubMedCrossRefGoogle Scholar
  83. Regulation (EC) No 1829/2003 of the European Parliament and of the Council on genetically modified food and feed (22 September 2003). Official Journal of the European Union. L 268, 18.10.2003. http://europa.eu.int/eur-lex/pri/en/oj/dat/2003/1_268/1_26820031018en00010023.pdf
  84. Regulation (EC) No 1830/2003 of the European Parliament and of the Council concerning the traceability and labelling of genetically modified organisms and the traceability of food and feed products from genetically modified organisms (22 September 2003) and amending Directive 2001/18/EC. Official Journal of the European Union. L 268, 18.10.2003. http://europa.eu.int/eur-lex/pri/en/oj/dat/2003/1_268/1_26820031018en00240028.pdf
  85. Reuter H, Böckmann S, Breckling B (2008) Analysing cross-pollination studies in maize. In: Breckling B, Reuter H, Verhoeven R (eds) Implications of GM crop cultivation at large spatial scales. Theorie in der Ökologie 14, Peter Lang, Frankfurt, pp 47–52Google Scholar
  86. Romeis J, Meissle M, Bigler F (2006) Transgenic crops expressing Bacillus thuringiensis toxins and biological control. Nat Biotech 24:63–71CrossRefGoogle Scholar
  87. Saxena D, Flores S, Stotzky G (2002) Vertical movement in soil of insecticidal Cry1Ab protein from Bacillus thuringiensis. Soil Biol Biochem 34:111–120CrossRefGoogle Scholar
  88. Saxena D, Stotzky G (2001a) Bacillus thuringiensis (Bt) toxin released from root exudates and biomass of Bt corn has no apparent effect on earthworms, nematodes, protozoa, bacteria and fungi in soil. Soil Biol Biochem 33:1225–1230CrossRefGoogle Scholar
  89. Saxena D, Stotzky G (2001b) Bt corn has a higher lignin content than non-Bt corn. Am J Bot 88:1704–1706PubMedCrossRefGoogle Scholar
  90. Schimpf E (2006a) Exemplarische Analyse zu maschineller Verschleppung von gentechnisch verändertem Pflanzenmaterial beim überbetrieblichen Maschineneinsatz. Diplomarbeit, Universität KasselGoogle Scholar
  91. Schimpf M (2006b) Koexistenz im landwirtschaftlichen Alltag. Bericht zur Verbreitung von gentechnisch verändertem Material durch Landmaschinen. Arbeitsgemeinschaft bäuerliche Landwirtschaft e.V. (AbL) Hamm, pp 1–30. http://www.gentechnikfreieregionen. de/fileadmin/content/studien/koexistenz/06_Schimpf_Koexistenz.pdf
  92. Sears MK, Hellmich RL, Stanley-Horn DE, Oberhauser KS, Pleasants JM, Mattila HR, Siegfried BD, Dively GP (2001) Impact of Bt corn pollen on monarch butterfly populations: a risk assessment. Proc Natl Acad Sci USA (PNAS) 98:11937–11942CrossRefGoogle Scholar
  93. Shirai Y, Takahashi M (2005) Effects of transgenix Bt corn pollen on a non-target lycaenid butterfly, Pseudozizeeria maha. Appl Entomol Zool 40:151–159CrossRefGoogle Scholar
  94. Squire GR, Brooks DR, Bohan DA, Champion GT, Daniels RE, Haughton AJ, Hawes C, Heard MS, Hill MO, May MJ, Osborne JL, Perry JN, Roy DB, Woiwod IP, Firbank LG (2003) On the rationale and interpretation of the Farm Scale Evaluations of genetically modified herbicide-tolerant crops. Phil Trans R Soc Lond B 358:1779–1799. doi:10.1098/rstb.2003.1403CrossRefGoogle Scholar
  95. Sweet J (2003) Pollen dispersal and cross pollination. In: Boelt B (ed) Proceedings 1st European conference on the co-existence of genetically modified crops with conventional and organic crops. GMCC-03 13th–14th November, 2003 Helsingør, Denmark. Published by the Danish Institute of Agricultural Sciences, Research Centre Flakkebjerg DK-4200 Slagelse, Denmark, pp 21–32Google Scholar
  96. Tabashnik BE, Gassmann AJ, Crowder DW, Carrière Y (2008) Field evolved insect resistance to transgenic Bt crops. ISB News Report Agricultural and Environmental Biotechnology, pp 1–5. http://www.isb.vt.edu/news/2008/aug08.pdf
  97. Tapp H, Stotzky G (1998) Persistance of the insecticidal toxin from Bacillus thuringiensis subsp. kurstaki in soil. Soil Biol Biochem 20:471–476CrossRefGoogle Scholar
  98. Treu R, Emberlin J (2000) Pollen dispersal in the crops Maize (Zea mays), Oil seed rape (Brassica napus ssp. oleifera), Potatoes (Solanum tuberosum), Sugar beet (Beta vulgaris ssp. vulgaris) and Wheat (Triticum aestivum). A report for the Soil Association from the National Pollen Research Unit. University College Worcester, pp 1–54Google Scholar
  99. Turrini A, Sbrana C, Nuti MP, Pietrangeli BM, Giovannetti M (2004) Development of a model system to assess the impact of genetically modified corn and auberinge plants on arbuscular mycorrhizal fungi. Plant Soil 266:69–75CrossRefGoogle Scholar
  100. Van den Berg J (2010) Bt-resistant target pests. Quick occurrence in South Africa. Presented at: Advancing the understanding of biosafety. Latest scientific findigs, polica responses and public participation. Nagoya 7.-9.10. 2010. http://www.ensser.org/uploads/media/3.3-vandenBerg-EN.pdf
  101. Van Rensburg JBJ (2007) First report of field resistance by the stem borer, Busseola fusca (Fuller) to Bt-transgenic maize. S Afr J Plant Soil 24:147–151Google Scholar
  102. Vercesi ML, Krogh PH, Holmstrup M (2006) Can Bacillus thuriengiensis (Bt) corn residues and Bt-corn plants affect life-history traits in the earthworm Aporrectodea caliginosa? Appl Soil Ecol 32:180–187CrossRefGoogle Scholar
  103. Volkmar C, Traugoo M, Juen A, Schorling M, Freier B (2004) Spider communities in Bt maize and conventional maize. In: Romeis J, Bigler F (eds) Proceedings of the meeting “Ecological Impact of Genetically Modified Organisms” at Prague (Czech Republic), 26–29 November 2003. Working Group “GMOs in Integrated Production”. IOBC/wprs Bulletin 27:165–170Google Scholar
  104. Weber W, Bringezu T, Broer I, Holz F, Eder J (2005) Koexistenz von gentechnisch verändertem und konventionellem Mais. Mais 1:1–6Google Scholar
  105. Weekes R, Henry C, Morgan D, Boffey C, Daniels R (2003) Crop-to-crop gene flow in maize: a challenge to co-existence in England? In: Boelt B (ed) Proceedings 1st European conference on the co-existence of genetically modified crops with conventional and organic crops. GMCC-03 13th–14th November, 2003 Helsingør, Denmark. Published by the Danish Institute of Agricultural Sciences, Research Centre Flakkebjerg DK-4200 Slagelse, Denmark, pp 79–81Google Scholar
  106. Wolfenbarger LL, Gonzalez-Espinola M (2004) Assessment of effects on natural ecosystems. Background document chapter 4 for: Commission for Environmental Cooperation (CEC) Maize & biodiversity. The effects of transgenic maize in Mexico. CEC Secretariat Report, pp 1–36Google Scholar
  107. Wraight CL, Zangerl AR, Carroll MJ, Berenbaum MR (2000) Absence of toxicity of Bacillus thuringiensis pollen to black swallowtails under field conditions. Proc Natl Acad Sci USA (PNAS) 97:7700–7703CrossRefGoogle Scholar
  108. Zangerl AR, McKenna D, Wraight CL, Carroll M, Ficarello P, Warner R, Berenbaum MR (2001) Effects of exposure to event 176 Bacillus thuringiensis corn pollen on monarch and black swallowtail caterpillars under field conditions. Proc Natl Acad Sci USA (PNAS) 98:11908–11912CrossRefGoogle Scholar
  109. Züghart W, Breckling B (2003) Konzeptionelle Entwicklung eines Monitoring von Umweltwirkungen transgener Kulturpflanzen Teil 1 und 2. Umweltforschungsplan des Bundesministeriums für Umwelt, Naturschutz und Reaktorsicherheit. UBA Texte 50/03Google Scholar
  110. Zwahlen C, Hilbeck A, Howald R, Nentwig W (2003) Effects of transgenic Bt corn litter on the earthworm Lumbricus terrestris. Mol Ecol 12:1077–1086PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Broder Breckling
    • 1
    • 2
    Email author
  • Simone Böckmann
    • 3
  • Hauke Reuter
    • 4
    • 5
  1. 1.Lehrstuhl für LandschaftsökologieUniversität VechtaVechtaDeutschland
  2. 2.Zentrum für Umweltforschung und nachhaltige Technologien (UFT), Abt. 10 (Ökologie), Universität BremenBremenDeutschland
  3. 3.Zentrum für Umweltforschung (UFT), Abt. 10 (Ökologie), Universität BremenBremenDeutschland
  4. 4.Zentrum für Umweltforschung (UFT), Abt. 10 (Ökologie), Universität BremenBremenDeutschland
  5. 5.Leibniz-Zentrum für Marine Tropenökologie (ZMT)BremenDeutschland

Personalised recommendations