Skip to main content

Spatial Microsimulation

  • Reference work entry
  • First Online:
Handbook of Regional Science

Abstract

Spatial microsimulation is an excellent option to create estimated populations at a range of spatial scales where data may be otherwise unavailable. In this chapter, we outline three common methods of spatial microsimulation, identifying the relative strengths and weaknesses of each approach. We conclude with a worked example using deterministic reweighting to estimate tobacco smoking prevalence by neighborhood in London, UK. This illustrates how spatial microsimulation may be used to estimate not only populations but also behaviors and how this information may then be used to predict the outcomes of policy change at the local level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson B (2007) Creating small-area income estimates: spatial microsimulation modeling. Department for Communities and Local Government. Communities and Local Government, London

    Google Scholar 

  • Ballas D, Rossiter D, Thomas B, Clarke G, Dorling D (2005) Geography matters. Simulating the local impacts of national social policies. Joseph Rowntree Foundation, York

    Google Scholar 

  • Beckman RJ, Baggerly KA, McKay MD (1996) Creating synthetic baseline populations. Transport Res Part A 30(6):415–429

    Google Scholar 

  • Birkin M, Clarke M (1988) SYNTHESIS – a synthetic spatial information system for urban and regional analysis: methods and examples. Environ Plann A 20:1645–1671

    Article  Google Scholar 

  • Birkin M, Clarke M (1989) The generation of individual and household incomes at the small area level using SYNTHESIS. Reg Stud 23(6):535–548

    Article  Google Scholar 

  • Birkin M, Wu B (2012) A review of microsimulation and hybrid agent-based models. In: Heppenstall AJ, Crooks AT, See LM, Batty M (eds) Agent-based models of geographical systems. Springer, Dordrecht, pp 51–68

    Chapter  Google Scholar 

  • Brown L, Harding A (2002) Social modeling and public policy: application of microsimulation modeling in Australia. Jasss J Artif Soc Soc Simul 5:4

    Google Scholar 

  • Congdon P (2006) Estimating diabetes prevalence by small area in England. J Pub Health 28(1):71–81

    Article  Google Scholar 

  • Crooks A, Heppenstall A (2012) Introduction to agent-based modeling. In: Heppenstall AJ, Crooks AT, See LM, Batty M (eds) Agent-based models of geographical systems. Springer, Dordrecht, pp 85–108

    Chapter  Google Scholar 

  • Davies L (1987) Genetic algorithms and simulated annealing: research notes in artificial intelligence. Pitman, London

    Google Scholar 

  • Gilbert N, Troitzsch KG (2005) Simulation for the social scientist. Open University Press, Berkshire

    Google Scholar 

  • Harland K, Heppenstall AJ, Smith DM, Birkin MH (2012) Creating realistic synthetic populations at varying spatial scales: a comparative critique of population synthesis techniques. J Artif Soc Soc Simul 15:1

    Google Scholar 

  • Kennell DL, Sheils JF (1990) PRISM: dynamic simulation of pension and retirement income. In: Lewis GH, Michel RC (eds) Microsimulation techniques for tax and transfer analysis. The Urban Institute Press, Washington, DC

    Google Scholar 

  • Lambert S, Percival R, Schofield D, Paul S (1994) An introduction to STINMOD: a static microsimulation Model, NATSEM Technical Paper No 1. University of Canberra, Canberra

    Google Scholar 

  • Liu R (2005) The DRACULA dynamic network microsimulation model. In: Kitamura R, Kuwahara M (eds) Simulation approaches in transportation analysis: recent advances and challenges. Springer, pp. 23–56. ISBN0-387-24108-6

    Google Scholar 

  • Moon G, Quarendon G, Barnard S, Twigg L, Blyth B (2007) Fat nation: deciphering the distinctive geographies of obesity in England. Soc Sci Med 65(1):25–31

    Google Scholar 

  • O’Donoghue C (2001) Dynamic microsimulation: a methodological survey. Brazilian Elect J Econ 4:2

    Google Scholar 

  • Openshaw S (1995) Developing automated and smart spatial pattern exploration tools for geographical information systems applications. Statistician 44:3–16

    Article  Google Scholar 

  • Openshaw S, Rao L (1995) Algorithms for reengineering 1991 census geography. Environ Plann A 27:425–446

    Article  Google Scholar 

  • Otten RHJM, van Ginneken LPPP (1989) The annealing algorithm. The Springer Int Ser Engin Comp Sci 72(1):5–17

    Google Scholar 

  • Redmond G, Sutherland H, Wilson M (1998) The arithmetic of tax and social security reform: a user’s guide to microsimulation: methods and analysis. Cambridge University Press, Cambridge

    Google Scholar 

  • Rephann TJ (1999) The education module for SVERIGE: Documentation V 1.0. Available at: http://www.equotient.net/papers/educate.pdf

  • Smith DM, Clarke GP, Harland K (2009) Improving the synthetic data generation process in spatial microsimulation models. Environ Plann A 41(5):1251–1268

    Article  Google Scholar 

  • Smith DM, Pearce JR, Harland K (2011) Can a deterministic spatial microsimulation model provide reliable small-area estimates of health behaviors? An example of smoking prevalence in New Zealand. Health Place 17:618–624

    Article  Google Scholar 

  • Voas D, Williamson P (2000) An evaluation of the combinatorial optimisation approach to the creation of synthetic microdata. Int J Popul Geogr 6:349–366

    Article  Google Scholar 

  • Voas D, Williamson P (2001) Evaluating goodness-of-fit measures for synthetic microdata. Geograph Environ Model 5:177–200

    Article  Google Scholar 

  • Williamson P, Clarke GP (1996) Estimating small-area demands for water with the use of microsimulation. In: Clarke GP (ed) Microsimulation for urban and regional policy analysis. Pion, London, pp 117–148

    Google Scholar 

  • Williamson P, Birkin M, Rees P (1998) The estimation of population microdata by using data from small area statistics and samples of anonymised records. Environ Plann A 30:785–816

    Article  Google Scholar 

  • Wu BM, Birkin MH (2012) Agent-based extensions to a spatial microsimulation model of demographic change. In Heppenstall AJ, Crooks AT, See LM, Batty M (eds) Agent-based models of geographical systems. Springer, Dordrecht, pp 347–360

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was funded by the ESRC funded grant “Modeling Individual Consumer Behavior” (RES-061-25-0030) and MRC Population Health Scientist Fellowship (G0802447). The modeling framework used was developed by Kirk Harland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alison J. Heppenstall .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Heppenstall, A.J., Smith, D.M. (2014). Spatial Microsimulation. In: Fischer, M., Nijkamp, P. (eds) Handbook of Regional Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23430-9_65

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23430-9_65

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23429-3

  • Online ISBN: 978-3-642-23430-9

  • eBook Packages: Business and Economics

Publish with us

Policies and ethics