A Genetic-Based Solution to the Task-Based Sailor Assignment Problem

  • Dipankar Dasgupta
  • Deon Garrett
  • Fernando Nino
  • Alex Banceanu
  • David Becerra

Abstract

This chapter presents a study investigating a multi-objective formulation of the United States Navy’s Task-based Sailor Assignment Problem and examines the performance of a widely used multi-objective evolutionary algorithm (MOEA), namely NSGA-II, on large instances of this problem. The performance of the evolutionary algorithm is examined with respect to both solution quality and diversity and has shown to provide inadequate diversity along the Pareto front. Domain-specific local improvement operators were introduced into the MOEA, producing significant performance increases over the evolutionary algorithm alone. Thus, hybrid MOEAs provided greater diversity along the Pareto front. Also a parallel version of the evolutionary algorithm was implemented. Particularly, an island model implementation was investigated. Exhaustive experimentations of the sequential and parallel implementations were carried out. The experimental results show that the genetic-based solution presented here is suitable for these types of problems.

Keywords

Time Slot Pareto Front Assignment Problem Multiobjective Optimization Parallel Implementation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Knowles, J.D., Corne, D.W.: Quantifying the effects of objective space dimension in evolutionary multiobjective optimization. Multi-Criterion Optimization, 757–771 (2007)Google Scholar
  2. 2.
    Moscato, P.: On evolution, search, optimization, genetic algorithms, and martial arts: Towards memetic algorithms. Technical Report 826, Caltech Concurrent Computation Program, C3P (1989)Google Scholar
  3. 3.
    Moscato, P., Cotta, C.: A gentle introduction to memetic algorithms. In: Handbook of Metaheuristics, pp. 105–144 (2003)Google Scholar
  4. 4.
    Dasgupta, D., Hernandez, G., Garrett, D., Vejandla, P., Kaushal, A., Yerneni, R., Simien, J.: A comparison of multiobjective evolutionary algorithms with informed initialization and kuhn-munkres algorithm for the sailor assignment problem. In: Proceedings of the 2008 Genetic and Evolutionary Computation Conference (GECCO 2008). ACM Press, New York (2008)Google Scholar
  5. 5.
    Garrett, J.D., Vannucci, J., Silva, R., Dasgupta, D., Simien, J.: Genetic algorithms for the sailor assignment problem. In: Proceedings of the 2005 Genetic and Evolutionary Computation Conference, GECCO 2005. ACM Press, New York (2005)Google Scholar
  6. 6.
    Knowles, J.D., Corne, D.W.: Memetic algorithms for multiobjective optimization: Issues, methods, and prospects. In: Krasnogor, N., Smith, J.E., Hart, W.E. (eds.) Recent Advances in Memetic Algorithms. Springer, Heidelberg (2004)Google Scholar
  7. 7.
    Jaszkiewicz, A.: On the performance of multiple objective genetic local search on the 0/1 knapsack problem: A comparative experiment. Technical Report RA-002/2000, Institute of Computing Science, Poznan University of Technology (July 2000)Google Scholar
  8. 8.
    López-Ibáñez, M., Paquete, L., Stützle, T.: Hybrid population-based algorithms for the bi-objective quadratic assignment problem. Technical Report 1, FG Intellektik, FB Informatik, TU Darmstadt, Journal of Mathematical Modelling and Algorithms (2004)Google Scholar
  9. 9.
    Shmoys, D.B., Tardos, É.: An approximation algorithm for the generalized assignment problem. Mathematical Programming 62(1), 461–474 (1993)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Knowles, J., Corne, D.: Towards Landscape Analyses to Inform the Design of Hybrid Local Search for the Multiobjective Quadratic Assignment Problem. In: Abraham, A., Ruiz del Solar, J., Koppen, M. (eds.) Soft Computing Systems: Design, Management and Applications, pp. 271–279. IOS Press, Amsterdam (2002)Google Scholar
  11. 11.
    Knowles, J.D., Corne, D.W.: M-PAES: A memetic algorithm for multiobjective optimization. In: Proceedings of the 2000 Congress on Evolutionary Computation (CEC 2000), pp. 325–332. IEEE Press, Los Alamitos (2000)CrossRefGoogle Scholar
  12. 12.
    Krasnogor, N.: Towards robust memetic algorithms. In: Hart, W.E., Krasnogor, N., Smith, J.E. (eds.) Recent Advances in Memetic Algorithms, pp. 185–208. Springer, Heidelberg (2004)Google Scholar
  13. 13.
    Garrett, J.D., Vannucci, J., Dasgupta, D., Simien, J.: Applying hybrid multiobjective evolutionary algorithms to the sailor assignment problem. In: Jain, L., Palade, V., Srinivasan, D. (eds.) Advances in Evolutionary Computing for System Design, pp. 269–301. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Gale, D., Shapley, L.S.: College admissions and the stability of marriage. The American Mathematical Monthly 69, 9–15 (1962)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (1991)CrossRefGoogle Scholar
  16. 16.
    Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength pareto evolutionary algorithm. Technical Report 103, Computer Engineering and Networks Laboratory (TIK), Swiss Federal Institute of Technology (ETH), Zurich, Switzerland (May 2001)Google Scholar
  17. 17.
    Munkres, J.: Algorithms for the assignment and transportation problems. Journal of the Society of Industrial and Applied Mathematics 5(1), 32–38 (1957)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Kuhn, H.W.: The hungarian method for the assignment problem. Naval Research Logistic Quarterly 2, 83–97 (1955)CrossRefGoogle Scholar
  19. 19.
    Dasgupta, D., Nino, F., Garrett, D., Chaudhuri, K., Medapati, S., Kaushal, A., Simien, J.: A multiobjective evolutionary algorithm for the task based sailor assignment problem. In: Proceedings of the 2009 Genetic and Evolutionary Computation Conference (GECCO 2009), pp. 1475–1482. ACM, New York (2009)Google Scholar
  20. 20.
    Akgul, M.: The linear assignment problem. Combinatorial Optimization, 85–122 (1992)Google Scholar
  21. 21.
    Talbi, E.-G., Mostaghim, S., Okabe, T., Ishibuchi, H., Rudolph, G., Coello Coello, C.A.: Parallel approaches for multiobjective optimization. In: Branke, J., Deb, K., Miettinen, K., Słowiński, R. (eds.) Multiobjective Optimization. LNCS, vol. 5252, pp. 349–372. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  22. 22.
  23. 23.
    Freeman, E., Arnold, K., Hupfer, S.: JavaSpaces principles, patterns, and practice. E Addison-Wesley Longman Ltd., Amsterdam (1999)Google Scholar
  24. 24.
    Coello Coello, C.A., Lamont, G.B., Van Veldhuizen, D.A.: Evolutionary algorithms for solving multi-objective problems. Springer-Verlag New York Inc. (2007)Google Scholar
  25. 25.
    Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable multi-objective optimization test problems. In: Proceedings of the 2002 Congress on Evolutionary Computation (CEC 2002), pp. 825–830. IEEE Press, Los Alamitos (2002)CrossRefGoogle Scholar
  26. 26.
    Bosman, P.A.N.: Design and Application of Iterated Density-Estimation Evolutionary Algorithms. PhD thesis, Institute of Information and Computing Sciences, Universiteit Utrecht, Utrecht, The Netherlands (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Dipankar Dasgupta
    • 1
  • Deon Garrett
    • 2
  • Fernando Nino
    • 3
  • Alex Banceanu
    • 1
  • David Becerra
    • 3
  1. 1.Department of Computer ScienceUniversity of MemphisMemphisUSA
  2. 2.Icelandic Institute for Intelligent Machines/School of Computer ScienceReykjavik UniversityReykjavikiceland
  3. 3.Department of Computer ScienceNational University of ColombiaBogotaColombia

Personalised recommendations