A Genetic Programming-Based Approach for the Performance Characteristics Assessment of Stabilized Soil

  • Amir Hossein Alavi
  • Amir Hossein Gandomi
  • Ali Mollahasani

Abstract

This chapter presents a variant of genetic programming, namely linear genetic programming (LGP), and a hybrid search algorithm coupling LGP and simulated annealing (SA), called LGP/SA, to predict the performance characteristics of stabilized soil. LGP and LGP/SA relate the unconfined compressive strength (UCS), maximum dry density (MDD), and optimum moisture content (OMC) metrics of stabilized soil to the properties of the natural soil as well as the types and quantities of stabilizing additives. Different sets of LGP and LGP/SA-based prediction models have been separately developed. The contributions of the parameters affecting UCS, MDD, and OMC are evaluated through a sensitivity analysis. A subsequent parametric analysis is carried out and the trends of the results are compared with previous studies. A comprehensive set of data obtained from the literature has been used for developing the models. Experimental results confirm that the accuracy of the proposed models is satisfactory. In particular, the LGP-based models are found to be more accurate than the LGP/SA-based models.

Keywords

Mean Square Error Genetic Programming Parent Program Mean Absolute Error Soil Stabilization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akpokodje, E.G.: The stabilization of some arid zone soils with cements and lime. Quarterly Journal of Engineering Geology London 18, 173–180 (1985)CrossRefGoogle Scholar
  2. 2.
    Bell, F.G.: Lime stabilization of clay minerals and soils. Engineering Geology 42(40), 223–237 (1996)CrossRefGoogle Scholar
  3. 3.
    Soil engineering and stabilization. Technical report, USACE (2000)Google Scholar
  4. 4.
    Ngowi, A.B.: Improving the traditional earth construction: a case study of Botswana. Construction and Building Materials 11(1), 1–7 (1997)CrossRefGoogle Scholar
  5. 5.
    Bryan, A.J.: Criteria for the suitability of soil for cement stabilization. Building and Environment 23(4), 309–319 (1988)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Osula, D.O.A.: A comparative evaluation of cement and lime modification of laterite. Engineering Geology 42, 71–81 (1996)CrossRefGoogle Scholar
  7. 7.
    Jumikis, A.R.: Geology and soils of the Newark (NJ) metropolitan area. Journal of the Soil Mechanics and Foundations Division ASCE 93 (SM2), 71–95 (1946)Google Scholar
  8. 8.
    Linveh, M., Ishai, I.: Using indicative properties to predict the density-moisture relationship of soil. Transportation Research Record 60P, 22–28 (1978)Google Scholar
  9. 9.
    Wang, M.C., Huang, C.C.: Soil compaction and permeability prediction models. Journal of Environmental Engineering ASCE 110, 1063–1083 (1984)CrossRefGoogle Scholar
  10. 10.
    Blotz, L.R., Benson, C.H., Boutwell, G.P.: Estimating optimum water content and maximum dry unit weight for compacted clays. Journal Geotechnical and Geo-Environmental Engineering ASCE 124(9), 907–912 (1998)CrossRefGoogle Scholar
  11. 11.
    Sridharan, A., Nagaraj, H.B.: Plastic limit and compaction characteristics of fine-grained soils. Ground Improvement 9(1), 17–22 (2005)CrossRefGoogle Scholar
  12. 12.
    Sinha, S.K., Wang, M.C.: Artificial neural network prediction models for soil compaction and permeability. Geotechnical and Geological Engineering 26, 47–64 (2008)CrossRefGoogle Scholar
  13. 13.
    Gunaydin, O.: Estimation of soil compaction parameters by using statistical analyses and artificial neural networks. Environmental Geology 10, 1300–1306 (2008)Google Scholar
  14. 14.
    Horpibulsuk, S.: Analysis and assessment of engineering behavior of cement stabilised clays. PhD thesis, Saga University, Japan (2001)Google Scholar
  15. 15.
    Tan, T.S., Goh, T.L., Yong, K.Y.: Properties of singapore marine clays improved by cement mixing. Geotechnical Testing Journal 25, 422–433 (2002)Google Scholar
  16. 16.
    Horpibulsuk, S., Bergado, D.T., Lorenzo, G.A.: Compressibility of cement-admixed clays at high water content. Geotechnique 54(2), 151–154 (2004)CrossRefGoogle Scholar
  17. 17.
    Narendra, B.S., Sivapullaiah, P.V., Suresh, S., Omkar, S.N.: Prediction of unconfined compressive strength of soft grounds using computational intelligence techniques: A comparative study. Computers and Geotechnics 33, 196–208 (2006)CrossRefGoogle Scholar
  18. 18.
    Koza, J.R.: Genetic programming: On the programming of computers by means of natural selection. MIT Press, Cambridge (1992)MATHGoogle Scholar
  19. 19.
    Banzhaf, W., Nordin, P., Keller, R.E., Francone, F.D.: Genetic Programming – An introduction on the automatic evolution of computer programs and its application. Morgan Kaufmann Publishers, Heidelberg, San Francisco (1998)Google Scholar
  20. 20.
    Bäck, T.: Evolutionary algorithms in theory and practice: Evolution strategies, evolutionary programming, genetic algorithms. Oxford University Press, USA (1996)MATHGoogle Scholar
  21. 21.
    Weise, T.: Global optimization algorithms-Theory and application (2007), http://www.it-weise.de
  22. 22.
    Brameier, M., Banzhaf, W.: Linear genetic programming. Springer Science + Business Media, New York (2007)MATHGoogle Scholar
  23. 23.
    Brameier, M., Banzhaf, W.: A comparison of linear genetic programming and neural networks in medical data mining. IEEE Transactions on Evolutionary Computation 5(1), 17–26 (2001)CrossRefGoogle Scholar
  24. 24.
    Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equation of state calculations by fast computing mechanics. Journal of Chemical Physics 21(6), 1087–1092 (1953)CrossRefGoogle Scholar
  25. 25.
    Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Cerny, V.: Thermo-dynamical approach to the traveling salesman problem: An efficient simulation algorithm. Journal of Optimization Theory and Applications 45, 41–52 (1985)MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Aarts, E.: Simulated annealing and boltzmann machines: A stochastic approach to combinatorial optimization and neural Computing. Wiley, New York (1989)MATHGoogle Scholar
  28. 28.
    Kita, H.: Simulated annealing. Japan Society for Fuzzy Theory and Intelligent Informatics 9(6), 870–875 (1997)Google Scholar
  29. 29.
    Ingber, L.: Simulated annealing: Practice versus theory. Mathematical and Computer Modeling 18(11), 29–57 (1993)MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Folino, G., Pizzuti, C., Spezzano, G.: Genetic programming and simulated annealing: A hybrid method to evolve decision trees. In: Poli, R., Banzhaf, W., Langdon, W.B., Miller, J., Nordin, P., Fogarty, T.C. (eds.) EuroGP 2000, vol. 1802, pp. 294–303 (2000)Google Scholar
  31. 31.
    Poli, R., Langdon, W.B., McPhee, N.F., Koza, J.R.: Genetic programming: An introductory tutorial and a survey of techniques and applications. Technical Report ces-475, UK: University of Essex (2007)Google Scholar
  32. 32.
    Oltean, M., Dumitrescu, D.: Multi expression programming. Technical Report UBB-01-2002, Babeş-Bolyai University, Cluj-Napoca, Romania (2002)Google Scholar
  33. 33.
    Oltean, M., Grosan, C.: A comparison of several linear genetic programming techniques. Complex Systems 14(4), 1–29 (2003)MathSciNetGoogle Scholar
  34. 34.
    Francone, F.D.: Discipulus(TM) owner’s manual, version 4.0. Register Machine Learning Technologies (2001)Google Scholar
  35. 35.
    Francone, F.D., Deschaine, L.M.: Extending the boundaries of design optimization by integrating fast optimization techniques with machine-code-based, linear genetic programming. Information Sciences 161, 99–120 (2004)CrossRefGoogle Scholar
  36. 36.
    Francone, F.D.: Discipulus Lite(TM) owner’s manual, version 4.0. Register Machine Learning Technologies (2004)Google Scholar
  37. 37.
    Soh, C.K., Yang, Y.: Genetic programming-based approach for structural optimization. Journal of Computing in Civil Engineering 14(1), 31–37 (2000)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Hong, Y.S., Rao, B.: Evolutionary self-organising modeling of a municipal wastewater treatment plant. Water Research 37(6), 1199–1212 (2003)CrossRefGoogle Scholar
  39. 39.
    Johari, A., Habibagahi, G., Ghahramani, A.: Prediction of soil-water characteristic curve using genetic programming. Journal of Geotechnical and Geoenvironmental Engineering ASCE 132(5), 661–665 (2006)CrossRefGoogle Scholar
  40. 40.
    Javadi, A.A., Rezania, M., Mousavinezhad, M.: Evaluation of liquefaction induced lateral displacements using genetic programming. Computers and Geotechnics 33(4-5), 222–233 (2006)CrossRefGoogle Scholar
  41. 41.
    Baykasoglu, A., Gullub, H., Canakci, H., Ozbakir, L.: Prediction of compressive and tensile strength of limestone via genetic programming. Expert Systems with Applications 35(1-2), 111–123 (2008)CrossRefGoogle Scholar
  42. 42.
    Gandomi, A.H., Alavi, A.H., Kazemi, S., Alinia, M.M.: Behavior appraisal of steel semi-rigid joints using linear genetic programming. Journal of Constructional Steel Research 65(1-2), 1738–1750 (2009)CrossRefGoogle Scholar
  43. 43.
    Gandomi, A.H., Alavi, A.H., Sahab, M.G.: New formulation for compressive strength of CFRP confined concrete cylinders using linear genetic programming. Materials and Structures 43(7), 963–983 (2010)CrossRefGoogle Scholar
  44. 44.
    Guven, A., Azamathulla, H.M., Zakaria, N.A.: Linear genetic programming for prediction of circular pile scour. Ocean Engineering 36(12-13), 985–991 (2009)CrossRefGoogle Scholar
  45. 45.
    Gandomi, A.H., Sahab, M.G., Alavi, A.H., Heshmati, A.A.R., Gandomi, M., Arjmandi, P.: Application of a coupled simulated annealing-genetic programming algorithm to the prediction of bolted joints behavior. American-Eurosian Journal of Scientific Research 3(2), 153–162 (2008)Google Scholar
  46. 46.
    Burroughs, V.S.: Quantitative criteria for the selection and stabilization of soils for rammed earth wall construction. PhD thesis, University of New South Wales, Australia (2001)Google Scholar
  47. 47.
    Frank, I.E., Todeschini, R.: The data analysis handbook. Elsevier, Amsterdam (1994)Google Scholar
  48. 48.
    Swingler, K.: Applying neural networks a practical guide. Academic Press, New York (1996)Google Scholar
  49. 49.
    Mesbahi, E.: Application of artificial neural networks in modelling and control of diesel engines. PhD thesis, University of Newcastle upon Tyne (2000)Google Scholar
  50. 50.
    Guven, A.: Linear genetic programming for time-series modelling of daily flow rate. Journal of Earth System Science 118(2), 137–146 (2009)CrossRefGoogle Scholar
  51. 51.
    Conrads, M., Dolezal, O., Francone, F.D., Nordin, P.: Discipulus-fast genetic programming based on aim learning technology. Technical report, Register Machine Learning Technologies Inc., Littleton, CO (2000)Google Scholar
  52. 52.
    Deschaine, L.M.: Using genetic programming to develop a c/c++ simulation model of a waste incinerator. Technical report, Science Applications International Corp. (2000)Google Scholar
  53. 53.
    Conrads, M., Dolezal, O., Francone, F.D., Nordin, P.: Discipulus-fast genetic programming based on aim learning technology. Technical report, Register Machine Learning Technologies Inc., Littleton, CO. (2004)Google Scholar
  54. 54.
    Smith, G.N.: Probability and statistics in civil engineering. Collins, London (1986)Google Scholar
  55. 55.
    Golbraikh, A., Tropsha, A.: Beware of q2. Journal of Molecular Graphics and Modelling 20(4), 269–276 (2002)CrossRefGoogle Scholar
  56. 56.
    Roy, P.P., Roy, K.: On some aspects of variable selection for partial least squares regression models. QSAR & Combinatorial Science 27, 302–313 (2008)CrossRefGoogle Scholar
  57. 57.
    Cybenko, J.: Approximations by superpositions of a sigmoidal function. Mathematics of Control, Signals, and Systems 2, 303–314 (1989)MathSciNetMATHCrossRefGoogle Scholar
  58. 58.
    Alavi, A.H., Gandomi, A.H., Mollahasani, A., Heshmati, A.A.R., Rashed, A.: Modeling of maximum dry density and optimum moisture content of stabilized soil using artificial neural networks. Journal of Plant Nutrition and Soil Science 173(3), 368–379 (2010)CrossRefGoogle Scholar
  59. 59.
    Bryan, A.J.: Soil/cement as a walling material. i: Stress/strain properties. Building and Environment 23(4), 321–330 (1988)MathSciNetCrossRefGoogle Scholar
  60. 60.
    Walker, P.J.: Strength durability and shrinkage characteristics of cement stabilised soil blocks. Cement and Concrete Composites 17, 301–310 (1995)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Amir Hossein Alavi
    • 1
  • Amir Hossein Gandomi
    • 2
  • Ali Mollahasani
    • 3
  1. 1.School of Civil EngineeringIran University of Science and TechnologyTehranIran
  2. 2.Intelligent Structural Engineering and Health Monitoring Laboratory, Department of Civil EngineeringUniversity of AkronAkronUSA
  3. 3.Department of Civil, Environmental and Material EngineeringUniversity of BolognaBolognaItaly

Personalised recommendations