Mass Metrology pp 171-197 | Cite as

Air Density and Buoyancy Correction

  • S. V. Gupta
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 155)


Two weights (standards of mass) are compared usually in air. Upward buoyancy forces act on each weight separately; the values of these upward forces are proportional to the product of the respective volumes of the two weights and air density at the time of comparison. Weights of same nominal value have different volumes if their density is not equal. Volume of a stainless steel 1-kg weight differs from that of the platinum iridium mass standard by about 85 cm3.


Mole Fraction Mass Difference Mass Variation Solid Cylinder Cylindrical Pipe 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    A. Picard, H. Fang, Three methods of determining the density of moist air during mass comparisons. Metrologia 39, 31–40 (2002) Preparatory Documents Google Scholar
  2. 2.
    T.J. Quinn, Rapport sur la reunion concernant les masses. BIPM 23, 25 (et 24 novembre 1976)Google Scholar
  3. 3.
    T.J. Quinn, Proces-verbaux. CIPM 45, Al–A24 (1977)Google Scholar
  4. 4.
    F.E. Jones, The Air Density Equation and the Transfer of the Mass Unit. (Publ. NBSIR 77–1278 du NBS, 1977), p. 28Google Scholar
  5. 5.
    F.E. Jones1, The air density equation and the transfer of the mass unit. J. Res. Nat. Bur. Stand. 83, 419–429 (1978)Google Scholar
  6. 6.
    M. Kochsiek, Uber die Luftauftriebskorrektion bei der Weitergabe der Masseneinheit, vol. Me-1 5 (PTB-Bericht, 1977), p. 44Google Scholar
  7. 7.
    P. Riety, La determination de la masse volumique de l’air humide. Document d’etude du groupe de travail. Rapport INM 77–1, 1977, p. 55 Air Density Equations Google Scholar
  8. 8.
    P. Caree, Note sur l’incertitude de la formule pour la determination de la masse volumique de l’air. Rapport BIPM-78/8, Decembre 1978–mai 1979, p. 11Google Scholar
  9. 9.
    P. Giacoma, Equation for determination of the density of air of moist air (1981). Metrologia 18, 33–40 (1982)ADSCrossRefGoogle Scholar
  10. 10.
    R.S. Davis, Equation for the determination of the density of air (1981/91). Metrologia 29, 67–70 (1992) Behaviour of Humid Air Google Scholar
  11. 11.
    A. Picard, R.S. Davis, M. Gläser, K. Fujii, Revised formula for the density of moist air (CIPM-2007). Metrologia 45, 149–155 (2008) Molar Gas Constant Google Scholar
  12. 12.
    L.P. Harrison, in Fundamental Concepts and Definitions Relating to Humidity, ed. by W. Wexler. Humidity and Moisture (Reinhold Publication Corp., New York, 1965)Google Scholar
  13. 13.
    P.J. Mohr, B.N. Taylor, CODATA recommended values of the fundamental physical constants 2002 Rev. Mod. Phys. 77, 1–107 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    P.J. Mohr, B.N. Taylor, D.B. Newell, CODATA recommended values of the fundamental physical constants 2006 Rev. Mod. Phys. 80, 633–730 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    T.J. Quinn, A.R. Colclough, T.R.D. Chandler, A new determination of the gas constant by an acoustical method. Philos. Trans. R. Soc. London A. 283, 367–420 (1976)ADSCrossRefGoogle Scholar
  16. 16.
    A.R. Colclough, T.J. Quinn, T.R.D. Chandler, An acoustic re-determination of the gas constant. Proc. Roy. Soc. London A.368, 125–139 (1979) Composition and Molar Mass of Dry Air Google Scholar
  17. 17.
    B.E. Gammon, The velocity of sound with derived state properties in helium at—175 to 159 C with pressure to 150 atm. J. Chem. Phys. 64, 2556–2568 (1976)ADSCrossRefGoogle Scholar
  18. 18.
    E.R. Cohen, P.N. Taylor, The 1973 least-squares adjustment of the fundamental constants. J. Phys. Chem. Ref. Data. 2, 663–734 (1973)ADSCrossRefGoogle Scholar
  19. 19.
    A. Leduc, La masse du litre d’air dans les conditions normales. Trav. Mem. Bur. Int. Poids Mes. XVI, 7–37 (1917)Google Scholar
  20. 20.
    O.F. Tower, La proportion d’oxygene dans l’air est-eHe constante. J. Chim. Phys. 11, 249–259 (1913)Google Scholar
  21. 21.
    E.W. Morley, On a possible cause of the variations observed in the amount of oxygen in the air. Am. J. Sci. 22, 417–438 (1881)Google Scholar
  22. 22.
    G.S. Callendar, Variations of the amount of carbon dioxide in different air currents. Q. J. R. Meteorol. Soc. 66, 395–400 (1940)ADSCrossRefGoogle Scholar
  23. 23.
    F.A. Paneth, The chemical composition of the atmosphere. Q. J. R. Meteorol. Soc. 63, 433–438 (1937)ADSCrossRefGoogle Scholar
  24. 24.
    E. Glueckauf, The composition of atmospheric air, in Compendium of Meteorology (Am. Meteorol. Soc., Boston, 1951), pp. 3–10 (XVI,pp. 7–37)Google Scholar
  25. 25.
    L. Machta, E. Hugues, Atmospheric oxygen in 1967 to Science 168, 1582–1584 (1970)Google Scholar
  26. 26.
    USStandard Atmosphere US Government Printing Office, Washington D.C., p. 3, p. 33 Mole Fraction of ArgonGoogle Scholar
  27. 27.
    K.F. Chackett, F.A. Paneth, E.J. Wilson, Chemical composition of the stratosphere at 70 km height. Nature 164, 128–129 (1949)ADSCrossRefGoogle Scholar
  28. 28.
    S. Oana, Bestimmung des Argons im besonderen Hinblick auf geloste Gase in naturlichen Wassern. J. Earth Sci. Nayoga Univ. 5, 103–124 (1957)Google Scholar
  29. 29.
    A. Picard, H. Fang, M. Gläser, Discrepancies in air density determination between the thermodynamic formula and a gravimetric method: evidence for a new value of the mole fraction of argon in air. Metrologia 41(6), 396–400 (2004)ADSCrossRefGoogle Scholar
  30. 30.
    S.Y. Park, J.S. Kim, J.B. Lee, M.B. Esler, R.S. Davis, R.I. Wielgosz, A re-determination of the argon content of air for buoyancy corrections in mass standard comparisons. Metrologia 41(6), 387–395 (2004) Compressibility and Saturated Vapour Pressure of Moist Air Google Scholar
  31. 31.
    C. Sutour, C. Stumpf, J.P. Kosinski, A. Surget, G. Hervouët, C. Yardin, T. Madec, A. Gosset, Determination of the argon concentration in ambient dry air for the calculation of air density. Metrologia 44, 448–452 (2007)ADSCrossRefGoogle Scholar
  32. 32.
    M.E. Wieser, Atomic weights of the elements 2005 (IUPAC technical report). Pure Appl. Chem. 78, 2051–2066 (2006)CrossRefGoogle Scholar
  33. 33.
    A. Wexler, Vapor pressure formulation for water in range 0 to 100 ∘ C. A revision. J. Res. Nat. Bur. Stand. 80A, 775–785 (1976) Artefacts Google Scholar
  34. 34.
    L. Greenspan, Functional equations for the enhancement factors for CO2-free moist air. J. Res. Nat. Bur. Stand. 80A, 41–44 (1976)Google Scholar
  35. 35.
    R.W. Hyland, A correlation for the second interaction virial coefficients and enhancement factors for moist air. J. Res. Nat. Bur. Stand. 79A, 551–60 (1975)Google Scholar
  36. 36.
    A. Picard, H. Fang, Mass comparisons using air buoyancy artefacts. Metrologia 41(4), 330–332 (2004)ADSCrossRefGoogle Scholar
  37. 37.
    S. Mizushima, M. Ueki, Y. Nezu, A. Ooiwa, Performance of the new prototype balance of the NRLM, in Proceedings IMEKO, 2000 TC3Google Scholar
  38. 38.
    Y. Kobayashi, Precision Measurement and Fundamental Constants, ed. by B.N. Taylor, W.D. Phillips (NBS Special Publication 617, USA, 1984), pp. 441–443 Refractometer Google Scholar
  39. 39.
    M. Glaser, R. Schwartz, M. Mecke, Experimental determination of air density using 1 kg mass comparator in vacuum. Metrologia 28, 45–50 (1991)ADSCrossRefGoogle Scholar
  40. 40.
    S. Davidson, NPL UK-2007, Personal communication and the website, on mass
  41. 41.
    H. Fang, P. Juncar, A new simple compact refractometer applied to measurements of air density fluctuations. Rev. Sci. Instrum. 70, 3160–3166 (1999)ADSCrossRefGoogle Scholar
  42. 42.
    L.R. Pendrill, Refractometry and gas density, Metrologia 41(2), S40–S51 (2004)ADSCrossRefGoogle Scholar
  43. 43.
    L.R. Pendrill, S.P. Boras, Density of moist air monitored by laser refractometry. Metrologia 25, 87–93 (1988)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.DelhiIndia

Personalised recommendations