Photocatalytic Degradation of Oxalic Acid in Water by the Synthesized Cu-TiO2 Nanocomposites

  • Azad Kumar
  • A. Kumar
  • R. Shrivastav


TiO2 is the most commonly used photo catalyst because of its high oxidation power, stability and non toxicity. Cu-TiO2 nanocomposites were prepared using the solution impregnation method. After characterization for crystalline phase and particle size by XRD analysis, both the commercially procured TiO2 and synthesized Cu-TiO2 nanocomposites were used as photo catalyst in the photo-degradation of Carboxylic Acids (Oxalic Acid). The degradation of oxalic acid in the presence of pure TiO2 and synthesized Cu-TiO2 was done. The effective photo-degradation was found in case of oxalic acid in the presence of Cu-TiO2 as compared to pure TiO2.


Carboxylic Acid Oxalic Acid Photocatalytic Degradation TiO2 Particle Residual Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    C . Xu, K. Richard, L.G Mc Mohan and S.V.M Khan; Applied catalysis B. environment ,64 (2006) 312-317.CrossRefGoogle Scholar
  2. 2.
    L.C. Chem, Y.C. Ho, W.S. Guo, C.M. Huang and T.C. Pan; Electrochemica Acta. 54 (2009) 3884-3891.CrossRefGoogle Scholar
  3. 3.
    A. Fuji Shima; Nature 238 (1972) 37-38.CrossRefGoogle Scholar
  4. 4.
    H. Sia, Z. Zheng, Zhavh, L. Zhang and Z. Zou; Material Research Bulletin 44 (2009)1312-1316.CrossRefGoogle Scholar
  5. 5.
    C. Karuna Karan and R. Dhanalakshmi; solar energy materials and solar cells. 92 (2008) 1315-1321.CrossRefGoogle Scholar
  6. 6.
    R. Khan and T.J. Kim ; J. Hazardous materials 165 (2009) 1243-1247.CrossRefGoogle Scholar
  7. 7.
    C.Y. Kuo and H. Lin; J. Hazardous materials 165 (2009)1243-1247.CrossRefGoogle Scholar
  8. 8.
    C.Y. Kuo; J. Hazardous material 163(2009) 239-244.CrossRefGoogle Scholar
  9. 9.
    A. Muller and A.K. Cheetham; The Chemistry of nanomaterial synthesis properties and applications (2004).Google Scholar
  10. 10.
    J.W. Shi, S.H. Chem, S.M.Wang, Wup and G.H. Xu; J. molecular catalysis a chem, 303(2009)141-147.CrossRefGoogle Scholar
  11. 11.
    S. Kaur and V. Singh; J. Hazardous materials 141(1) (2007) 230-236.CrossRefGoogle Scholar
  12. 12.
    D. Beydoun and R. Amal; J. Phys Chem B 104 (18) (2000) 4387-4396.CrossRefGoogle Scholar
  13. 13.
    B. Balamurugan and B.R.Mehta; Thin solid films, 396 (2001) 90-36.CrossRefGoogle Scholar
  14. 14.
    B. Damardji , H. Khalaf , L. Duclaux and B. David;Applied clay science 44 (2009) 201-205.CrossRefGoogle Scholar
  15. 15.
    A. Gary and C.L. Epling; Chemosphere 46 (2002) 561-570.CrossRefGoogle Scholar
  16. 16.
    S.C. Ameta, P.B. Punjabi, P. Rao and B. Single; J. Indian chem. Soc. 77 (2000) 157-160.Google Scholar
  17. 17.
    D.R Askland ;The science and Engineering of materials, 3rd Edition Chapman & Hall, London, 854 (1996).Google Scholar
  18. 18.
    H. Yoshida, Y. Lu, H. Nakayama and M. Hirothashi; J. Alloys and compounds 475 (2009) 383-386.CrossRefGoogle Scholar
  19. 19.
    M. Saquib and M. Muneer; Dyes and Pigments 56(1) (2003) 37-49.CrossRefGoogle Scholar
  20. 20.
    B.D. Cullity and S.R. Stock ;Elements of x-ray diffraction 3rd edition new Jersey, Prentice-Hall Inc. (2001).Google Scholar
  21. 21.
    K.Vinodgopal, D.E. Wynkoop and P.V. Kamat; Environ. Sci Tech . 30 (1996) 1660-1666.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Azad Kumar
    • 1
  • A. Kumar
    • 1
  • R. Shrivastav
    • 2
  1. 1.Department of ChemistryAgra CollegeAgraIndia
  2. 2.Department of ChemistryDayalbagh Educational InstituteDayalbagh, AgraIndia

Personalised recommendations