Role of Phenolics in Plant Defense Against Insect Herbivory

  • F. Rehman
  • F. A. Khan
  • S. M. A. Badruddin


Several secondary metabolites synthesized in plants have significant defensive role against herbivores, pests and pathogens. The defensive role played by such secondary metabolites include deterrence/antifeedant activity, toxicity or acting as precursors to physical defence systems. Many specialist herbivores and pathogens being one step more evolved circumvent the deterrent effects of secondary metabolites but actually utilize these compounds as either host recognition cues or nutrients. Phenylpropanoids are a group of phenolics, it is a chemically diverse family of compounds ranging from simple phenolic acid to large and complex polymers such as tannins, lignin and flavonoid. Phenolics derived from amino acids and their precursors and some compounds which derived from shikimic acid pathway. This group includes metabolites derived from the condensation of acetate units (e. g., terpenoids) and produced by the modification of aromatic amino acids (e. g., phenylpropanoids; cinnamic acids, lignin, precursors, hydroxybenzoic acids, catechols and coumarins), flavonoids, isoflavonoids and tannins like dihydroxyphenols and flavonols polymerized by the action of peroxidases and polyphenoloxidases. This review present an overview of biosynthesis and role of phenolics in plants by which they protect themselves against herbivory.


Condensed Tannin Hydroxycinnamic Acid Shikimic Acid Shikimate Pathway Defensive Role 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    R.N. Bennett and R.M. Wallsgrove; New Phytol. 127 (1994) 617–633.CrossRefGoogle Scholar
  2. 2.
    E. Wong. Plant phenolics. In: Butler G.W., Bailey R.W. (eds.) Chemsitry and biochemistry of herbage vol. 1, London: Academic Press (1973) 265–322.Google Scholar
  3. 3.
    H. Schafer and M. Wink; Biotech. J 4(12) (2009) 1684–1703.CrossRefGoogle Scholar
  4. 4.
    M. Mazid, T.A. Khan and F. Mohammad; J Biol and Med 3 (2011) 232–249.Google Scholar
  5. 5.
    G.A. Rosenthal; Phytochem. 30 (1991) 1055–1058.CrossRefGoogle Scholar
  6. 6.
    N. Wuyts, D. Waela and R. Swenner; Plant Physiol and Phytochem 44 (2006) 308–314.Google Scholar
  7. 7.
    D. Strack; Acad press New York (1997) 387–416.Google Scholar
  8. 8.
    C.P. Constable; AmerPhytopathSoct St Paul (1999) 137–166.Google Scholar
  9. 9.
    R. Santigo, R.A. Malvar, M.D. Baamonde, P. Revilla and X.C. Souto; J Econ entomol 98 (2005) 1349–1356.CrossRefGoogle Scholar
  10. 10.
    R. Santigo, A. Butron, J.T. Arnason, L.M. Reid, X.C. Souto and R.A. Malvar; J Agric Food Chem 54 (2006) 2274–2279.CrossRefGoogle Scholar
  11. 11.
    E.A. Bernays, G.C. Driver and M. Bilgener; Adv. Ecol. Res. 19 (1989) 263–302.CrossRefGoogle Scholar
  12. 12.
    D. Peters and C.P. Constabel; Plant J 32 (2002) 701–712.CrossRefGoogle Scholar
  13. 13.
    M.A. Bernards and Bastrup-Spohr; Induced plant resistance to Herbivory. 9thEds Schaller A Springer Stuttgart Germany (2008) 189–211.Google Scholar
  14. 14.
    H. Ding, R.L. Lamp and N. Ames; J ChemEcol 26 (2000) 969–984.Google Scholar
  15. 15.
    L.L. Walling; J plant Growth Regul 19 (2000) 195–216.Google Scholar
  16. 16.
    R.A. Dixon, F. Chen, D. Guo and K Parnathi; Phytochem 57 (2001) 1069–1084.CrossRefGoogle Scholar
  17. 17.
    W.E. Dyler, J.M. Henstrand, A.K. Handa and K.M. Herrmann; ProcNatlAcadSciUSa 86 (1989) 7370–7373.Google Scholar
  18. 18.
    T. Kondo, K. Yoshida, A. Nukagawa, T. Kawai, H. Tamura and T. Goto; Nature 358 (1992) 515–518.CrossRefGoogle Scholar
  19. 19.
    J.A. Lake, K.J. Field, M.P. Davey, D.J. Beerling and B.H. Lomax; Plant Cell and Environment 32 (2009) 1377–1389.CrossRefGoogle Scholar
  20. 20.
    K. Serghini, A De Lugue Perez, M.M. Castejon, T.L. Garcia and J.V. Jorrin; J Exp Bot 52 (2001) 227–234.Google Scholar
  21. 21.
    M./Madar and F.V. Amberg; Plant Physiol 70 (1982) 1128–1131.CrossRefGoogle Scholar
  22. 22.
    J.M. Gould; Physiol 14 (1983) 25–91.Google Scholar
  23. 23.
    Secondary metabolites in Introduction to Plant physiology, 4thedition., Eds. W.G. Hokins and N.P.A. Huner USA (2009) 459–479.Google Scholar
  24. 24.
    J.F. Oates, P.G. Waterman and G.M. Choo; Oecologia 45 (1980) 45–56.CrossRefGoogle Scholar
  25. 25.
    P.R. Cheeks, Vol IV. Phenolics Boca Raton CRC Press 1989.Google Scholar
  26. 26.
    J.B. Harborne; Introduciton to Ecological Chemistry. London: Acad Press (1988).Google Scholar
  27. 27.
    S. Koptur; Ecology 66 (1985) 1639–1650.CrossRefGoogle Scholar
  28. 28.
    A. Luczynski, M.B. Isman and D.A. Raworth; J Eco Ento. 83 (1990) 557–563.Google Scholar
  29. 29.
    M.B. Abou-Donia; Vol. IVthPhenolics Boca Raton: CRC Press (1989) 2–22.Google Scholar
  30. 30.
    M. Inoe, S. Sezaki, T. Sarin and T. Soquira; Applied Entol and Zol 20 (1985) 348–349.Google Scholar
  31. 31.
    P.O. Larsen. The biochemistry of plants, vol. 7, Ed.s P.K. Stumpf, E.E. Conn Acad Press New York (1981) 501–525.Google Scholar
  32. 32.
    P.P. Feeny; Ecology 51 (1970) 565–581.CrossRefGoogle Scholar
  33. 33.
    R.A. Razal, S. Ellis, S. Singh, N.G. Lewis, G.H.N. Tower; phytochem 41(1996) 31–36.CrossRefGoogle Scholar
  34. 34.
    Biochemistry and molecular biology of plants, Eds. R. Croteau, T.M. Kutchan, N.G. Lewis; Amercn soc plant biolgst Rochville;(2000)1250–1318.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • F. Rehman
    • 1
  • F. A. Khan
    • 1
  • S. M. A. Badruddin
    • 2
  1. 1.Department of BotanyAligarh Muslim UniversityAligarhIndia
  2. 2.Department of ZoologyAligarh Muslim UniversityAligarhIndia

Personalised recommendations