Advertisement

Synthesis and Characterization of Some Schiff Bases and Their Cobalt (II), Nickel (II) and Copper (II) Complexes via Environmentally Benign and Energy-Efficient Greener Methodology

  • K. Rathore
  • H. B. Singh

Abstract

Bifunctional tetradentate Schiff bases of o-vanillin and 2-hydroxy-1-naphthaldehyde with ethylenediamine and their complexes of cobalt (II), nickel (II) as well as copper (II) have been synthesized. Schiff base ligands and their metal complexes have been characterized by elemental analysis, molecular weight determination, molar conductance measurements, and UV-Vis., IR, NMR (1H and 13C) and mass spectral studies. Compounds have been synthesized in an open vessel under microwave irradiation using a domestic microwave oven. The free ligands and their complexes have been tested in vitro against a number of microorganisms in order to assess their anti-microbial properties.

Keywords

Antimicrobial Activity Schiff Base Molar Conductance Schiff Base Ligand Nickel Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    P. Anastas, and J.C. Warner; Green Chemistry: Theory and practice, Oxford UniversityPress, New York (1998) 30Google Scholar
  2. 2.
    B. Kahveci, M. Ozil, and M. Serdar; Heteroatom Chem.19(1) (2008)38–42CrossRefGoogle Scholar
  3. 3.
    N.H. Patel, H.M. Parekh, and M.N. Patel;Transition Metal Chem.30 (2005) 13–17CrossRefGoogle Scholar
  4. 4.
    M. Sekerci;XIVth National chemistry congress, Diyarbakir, Turkey (2000) 414Google Scholar
  5. 5.
    M. Sekerci; C. Alkan, A. Cukurovali, and Sayadam;XIIIth National chemistry congress,Samsun, Turkey(1999) 182Google Scholar
  6. 6.
    A.A. Jarrahpour, M. Motamedifar, K. Pakshir, N. Hadi, and M. Zarei;Journal of Molecules9 (2004)815–824CrossRefGoogle Scholar
  7. 7.
    S. Achut Munde, N. Amarnath Jagdale, M. Sarika Jadhav, and K. Trimbak Chondhekar; J. Serb. Chem. Soc. 75(3) (2010) 349–359CrossRefGoogle Scholar
  8. 8.
    S.A. Sadeek, M.S. Refat; J. Korean Chem. Soc. 2006, 50, 107CrossRefGoogle Scholar
  9. 9.
    C. Saxena, D.K. Sharma, and R.V. Singh; Phosphorus, Sulfur and Silicon 85 (1993) 9CrossRefGoogle Scholar
  10. 10.
    M. Jain, S. Nehra, P.C. Trivedi, and R.V. Singh; Heterocyclic Communications 9 (2003) 1CrossRefGoogle Scholar
  11. 11.
    W.J. Geary; COORD Chem. Rev. 7 (1971) 81CrossRefGoogle Scholar
  12. 12.
    R.C. Maurya and P. Patel; Synth React Inorg Met-org Chem. 33 (2003) 801CrossRefGoogle Scholar
  13. 13.
    K. Singh, P. Patel, and B.V. Agarwala; Spect. Lett. 28 (1995) 751CrossRefGoogle Scholar
  14. 14.
    A. Syamal, and M.R. Maurya; Indian J. Chem. 24A (1985) 836Google Scholar
  15. 15.
    V. Atre, G.V. Reddy, L.N. Sharada, and M.C. Ganorkar; Indian J. Chem. 21A (1982) 79Google Scholar
  16. 16.
    A.B.P. Lever; Inorganic Electronics Spectroscopy, Elsevier Amsterdam (1968) 395.Google Scholar
  17. 17.
    A.K. Tahir, H.S. Shivains, J. Nafees, and K. Shoukat; Indian J. Chem. Sect. 39 (2000) 450Google Scholar
  18. 18.
    R.M. Silverstein, G.C. Bassler, and C.T. Morril; Wiley John and sons, 4th Edn (1981) 241Google Scholar
  19. 19.
    F.W. Wehrli, A.P. Marchand, and S. Wehrli; Interpretation of Carbon-13 NMR Spectra; Wiley:New York, USA (1988)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • K. Rathore
    • 1
  • H. B. Singh
    • 1
  1. 1.School of Chemical Sciences, Dept. of ChemistrySt. John’s CollegeAgraIndia

Personalised recommendations