Formation and Characterization of Hydroxyapatite/Chitosan Composite: Effect of Composite Hydroxyapatite Coating and its Application on Biomedical Materials

  • S. Mulijani
  • G. Sulistyso


Natural bone is actually an inorganic/organic composite mainly made up of nano-structure hydroxyapatite (Ca10(PO4)6(OH)2, HAp) and collagen fibers. It is of most importance to synthesize nano-composites of inorganic/organic in order to have good biocompatibility, high bioactivity and great bonding properties. In this study, HAp nano-particle and HAp/chitosan (CTS) nanocomposite with a homogeneous microstructure were prepared and characterized. It is proposed that the nano-structure of hydroxyapatite/chitosan composite will have the best biomedical properties in the biomaterials applications. The mechanism of formation of the composite and the effects of inorganic component (n-HA) on the porous morphologies were investigated by using of FTIR, XRD, and SEM. Cathodic electrophoretic deposition has been utilized for the fabrication of composite hydroxyapatite-chitosan coatings on 316L stainless steel substrates. The addition of chitosan to the hydroxyapatite suspensions promoted the electrophoretic deposition of the hydroxyapatite nanoparticles and resulted in the formation of composite coatings. The obtained coatings provided the corrosion protection for the 316L stainless steel substrates.


Polylactic Acid Composite Coating Chitosan Solution Biphasic Calcium Phosphate Electrophoretic Deposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    F.Chen, Z.C. Wang and C.J. Lin; J. Materials Letters 57 (2002) 858–861.CrossRefGoogle Scholar
  2. 2.
    X. Pang and I. Zhitomirsky; J. Materials Chemistry and Physics 94 (2005) 245–251.CrossRefGoogle Scholar
  3. 3.
    J.M. Gomez-Vega and E. Saiz.; Biomaterials 21(2000) 105. CrossRefGoogle Scholar
  4. 4.
    R.H. Doremus; J. Mater. Sci. 27 (1992) 285.CrossRefGoogle Scholar
  5. 5.
    A. Sabokbar, R. Pandey, J. Diaz, J.M.W Quinn and D.W. Murray; J. Mater Sci: Mater Med 12 (2001) 659–664.CrossRefGoogle Scholar
  6. 6.
    T. Furukawa and Y. Matsusue; Biomaterials 21 (2000) 889.CrossRefGoogle Scholar
  7. 7.
    T. Kasuga and Y. Ota; Biomaterials 22 (2001) 19.CrossRefGoogle Scholar
  8. 8.
    M.C. Chang and T. Ikoma; J. Mater. Sci. Lett. 20 (2001) 1199.CrossRefGoogle Scholar
  9. 9.
    S. Viala, M. Freche and J.L. Lacout; Ann. Chim. Sci. Mater. 23 (1998) 69.CrossRefGoogle Scholar
  10. 10.
    M. Wang and W. Bonfield; Biomaterials 22 (2001) 1311.CrossRefGoogle Scholar
  11. 11.
    M. Wang, S. Deb and W. Bonfield; Mater. Lett. 44 (2000) 119.CrossRefGoogle Scholar
  12. 12.
    L. Jingxiao, Fei Shi, Ling Yu, Liting Niu and Shanshan Gao; J. Mater. Sci. Technol. 25 (2009) 4.Google Scholar
  13. 13.
    R.A.A. Muzzarelli, G. Biagini, A. DeBenedittis, P. Mengucci, G.Majni and G. Tosi, Carbohydr. Polym. 45 (2001) 35.CrossRefGoogle Scholar
  14. 14.
    C. Balazsi, F. W’eber, K. Zsuzsanna, E.Horv’ath and C. Nemeth; Journal of the European Ceramic Society 27 (2007) 1601–1606.CrossRefGoogle Scholar
  15. 15.
    M. Xianwei, K. Tae-Yub and K. Kyo-Han; Dent Mater J. 27 (5) (2008) 666–671.CrossRefGoogle Scholar
  16. 16.
    S. Nath, K.. Biswas and B. Basu; Scripta Materialia 58 (2008) 1054–1057.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • S. Mulijani
    • 1
  • G. Sulistyso
    • 2
  1. 1.Department of Chemistry, Faculty of Mathematics and Natural SciencesBogor Agricultural UniversityBogorIndonesia
  2. 2.National Atomic Energy Agency (BATAN)SerpongIndonesia

Personalised recommendations