2D QSAR Study of Some TIBO Derivatives as an Anti HIV Agent

  • L. K. Ojha
  • M. Thakur
  • A. M. Chaturvedi
  • A. Bhardwaj
  • A. Thakur


A set of sixteen Tetraimidazolebenzodiazepine -1- one (TIBO) derivatives with inhibitory concentration (pIC50) activity was subjected to the two dimensional quantitative structure activity relationships studies using computational drug design. Drug Designing module contain various combinations of physiochemical, electronic, topological and indicator parameter. TIBO taken as the lead molecule and QSAR model developed using multiple regression approach. For each set of descriptors, the best multilinear QSAR equations were obtained by the stepwise variable selection method using leave-one out cross-validation as selection criterion. Value of pIC50 was taken as dependent variable and physiochemical and topological parameter was taken as independent variable. The best QSAR model (r2 = 0.9672, Fisher test value F=38.706, Se = 0.2628) has acceptable statistical quality and predictive potential. From the build model it seems to be clear that indicator parameter (presence of halogen atom at X position) and Balaban index along with Molecular Refractivity (MR) of the molecule is very much responsible in the binding affinity of anti HIV drug. Thus this validated model brings important structural insight to aid the design of novel anti HIV agents.


Quantitative Structure Activity Relationship Quantitative Structure Activity Relationship Model Quantitative Structure Activity Relationship Study Indicator Parameter Quantitative Structure Activity Relationship Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    F. Barre-Sinoussi, J.C. Chermann, F. Rey, M.T. Nugeyre, S. Chamaret, J. Gruest, C. Dauguet, C. Axler- Blin, F. Vezinet-Brun, C. Rouzioux, W. Rozenbaum, L. Montagnier, Science 220, 868 (1983).CrossRefGoogle Scholar
  2. 2.
    R.C. Gallo, S.Z. Salahuddin, M. Popovic, G. .M. Shearer, M. Kaplan, B.F. Haynes, T.J. Palker, R. Redfield, J. Oleske, B. Safai, Science 224, 500 (1984).CrossRefGoogle Scholar
  3. 3.
    L.A. Kohlstaedt, J. Wang, J.M. Friedman, P.A. Rice, T.A. Steitz, Science 256, 1783 (1992).CrossRefGoogle Scholar
  4. 4.
    J.D. Pata, W.G. Stirtan, S.W. Goldstein, T.A. Steitz, Proc. Natl. Acad Sci. USA, 101, 10548 (2004).CrossRefGoogle Scholar
  5. 5.
    E.D. Clercq, Antiviral Res. 38, 153 (1998).CrossRefGoogle Scholar
  6. 6.
    R.A. Spence, W.M. Kati, K.S. Anderson, K.A. Johnson, Science 267, 988 (1995).CrossRefGoogle Scholar
  7. 7.
    K. Das, P.J. Lewi, H. Hughes, E. Arnold, Prog. Biophys. Mol. Biol. 88, 209 (2005).CrossRefGoogle Scholar
  8. 8.
    D.W. Rodgers, S.J. Gamblin, B.A. Harris, S. Ray, J.S. Culp, B. Hellmig, D.J. Woolf, C.Debouck, S.C. Harrison, Proc. Natl. Acad. Sci. USA, 92, 1222 (1995).CrossRefGoogle Scholar
  9. 9.
    Crum-Brown, A.; Fraser, T.R. On the Connectionbetween Chemical Constitution and Physiological Ac-tion. Part I. On the Physiological Action of the Salts ofthe Ammonium Bases, derived from Strychnia, Brucia,Thebaia, Codeia, Morphia, and Nicotia. Philosophical Transactions of the Royal Society of London 1868, 25, 151–2003.Google Scholar
  10. 10.
    Richet, C.R. Comptes Rendus des Seances de la Societe de Biologie et de ses Filiales, 1893, 9, 775. 4. Meyer, H. Zur Theorie der Alkoholnarkose Erste Mittheilung. Welche Eigenschaft der Anästhetica bedingt ihre narkotische Wirkung? Naunyn-Schmiedeberg’s Archives of Pharmacology 1899, 42(2- 4), 109–118.Google Scholar
  11. 11.
    Ferguson, J. Proceedings of the Royal Society B: Biological Sciences 1939, 127, 387.CrossRefGoogle Scholar
  12. 12.
    Hammett, L.P. Some Relations between Reaction Rates and Equilibrium Constants. Chemical Reviews 1935, 17, 125–136.CrossRefGoogle Scholar
  13. 13.
    M. Mahmoudian, J. Mol. Graphics Modell. 15 (1997) 149.CrossRefGoogle Scholar
  14. 14.
    Z. Zhou, M. Madrid, J.D. Madura, Proteins. 49 (2002) 529.CrossRefGoogle Scholar
  15. 15.
    M.B.K. Smith, M.L. Lamb, J. Tirado-Rives, W. Jorgensen, C.J. Michejda, S.K. Ruby, R. Smith Jr., Protein Eng. 13 (2000) 413.CrossRefGoogle Scholar
  16. 16.
    S.J. Titmuss, P.A. Keller, R. Griffith, Bioorg. Med. Chem. 7 (1999) 1163.CrossRefGoogle Scholar
  17. 14.
    R. Silvestri, M. Artico, G. De Martino, R. Ragno, S. Massa, R. Loddo, C. Murgioni, A.G. Loi, P.L. Colla, A. Pani, J. Med. Chem. 45 (2002) 1567.CrossRefGoogle Scholar
  18. 18.
    Y.Z. Chen, X.L. Gu, Z.W. Cao, J. Mol. Graphics Modell. 19 (2001) 560.CrossRefGoogle Scholar
  19. 19.
    M.L. Barreca, A. Carotti, A. Carrieri, A. Chimirri, A.M. Monforte, M.P. Calace, A. Rao, Bioorg. Med. Chem. 7 (1999) 2283.CrossRefGoogle Scholar
  20. 20.
    M.A.L. Eriksson, J. Pitera, P.A. Kollman, J. Med. Chem. 42 (1999) 868.CrossRefGoogle Scholar
  21. 21.
    R.H. Smith Jr., W. Jorgensen, J. Tirado-Rives, M.L.Lamb, P.A.J. Janssen, C.J. Michejda, M.B.K Smith, J. Med. Chem. 41 (1998) 5272.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • L. K. Ojha
    • 1
  • M. Thakur
    • 2
  • A. M. Chaturvedi
    • 1
  • A. Bhardwaj
    • 1
  • A. Thakur
    • 3
    • 4
  1. 1.Department of ChemistryGovt. Madhav Science CollegeUjjainIndia
  2. 2.Department of ChemistrySoftvision CollegeIndoreIndia
  3. 3.Department of ChemistryIndore Institute of Science & Technology(II)IndoreIndia
  4. 4.Research & Development DivisionDJ Laboratories Ltd.IndoreIndia

Personalised recommendations