Skip to main content

Chromatin Structure and Gene Expression: Function Follows Form

  • Chapter
  • First Online:
  • 1364 Accesses

Part of the book series: Epigenetics and Human Health ((EHH))

Abstract

Chromatin by its nature presents a major obstacle to all processes occurring in the nucleus: transcription, DNA repair, and replication. At local level, intimate interactions of DNA with the core histones render it less accessible to proteins that read sequence. Higher levels of chromatin organization may act to form a barrier hindering access of large macromolecular complexes to specific sequences. In this way, the spatial organization of chromatin within the nucleus constitutes the most basic level at which gene expression is regulated. These levels of structure are impacted by multiple different systems. Histone modifications play important roles in regulating transcription by affecting local and long-range chromatin structure. Accessibility of DNA binding sites to transcription factors is modulated by ATP-dependent nucleosome remodeling complexes which can translocate nucleosomes over considerable distances. Here, we discuss how histone and DNA modifications affect chromatin conformation and ultimately gene expression, and we provide examples where alterations in chromatin structure impact phenotype in development, disease, and adaptation to the environment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

Ac:

Acetylation

ATP:

Adenosine triphosphate

AVP:

Arginine vasopressin

BPA:

Bisphenol A

CpG:

Dinucleotide 5′-cytosine phosphate guanine – 3′

CTCF:

CCCTC-binding transcription factor

EDC:

Endocrine disrupting compound

ESC:

Embryonic stem cell

HAT:

Histone acetyltransferase

HCP:

CpG-rich promoter

HMGB:

High-mobility-group box

LAD:

Lamina associated domain

LCP:

CpG-poor promoter

Me:

Methylation

References

  • Agresti A, Bianchi ME (2003) HMGB proteins and gene expression. Curr Opin Genet Dev 13:170–178

    Article  PubMed  CAS  Google Scholar 

  • Avvakumov N, Nourani A, Cote J (2011) Histone chaperones: modulators of chromatin marks. Mol Cell 41:502–514

    Article  PubMed  CAS  Google Scholar 

  • Barker DJP (2007) The origins of the developmental origins theory. J Intern Med 261:412–417

    Article  PubMed  CAS  Google Scholar 

  • Barrero MJ, Boue S, Izpisua Belmonte JC (2010) Epigenetic mechanisms that regulate cell identity. Cell Stem Cell 7:565–570

    Article  PubMed  CAS  Google Scholar 

  • Barton CA, Hacker NF, Clark SJ, O’Brien PM (2008) DNA methylation changes in ovarian cancer: implications for early diagnosis, prognosis and treatment. Gynecol Oncol 109:129–139

    Article  PubMed  CAS  Google Scholar 

  • Baù D, Sanyal A, Lajoie BR, Capriotti E, Byron M, Lawrence JB, Dekker J, Marti-Renom MA (2011) The three-dimensional folding of the alpha-globin gene domain reveals formation of chromatin globules. Nat Struct Mol Biol 18:107–114

    Article  PubMed  Google Scholar 

  • Becker PB, Horz W (2002) ATP-dependent nucleosomere modeling. Annu Rev Biochem 71:247–273

    Article  PubMed  CAS  Google Scholar 

  • Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, Fry B, Meissner A, Wernig M, Plath K, Jaenisch R, Wagschal A, Feil R, Schreiber SL, Lander ES (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125:315–326

    Article  PubMed  CAS  Google Scholar 

  • Bienvenu T, Chelly J (2006) Molecular genetics of Rett syndrome: when DNA methylation goes unrecognized. Nat Rev Genet 7:415–426

    Article  PubMed  CAS  Google Scholar 

  • Birch JL, Tan BC, Panov KI, Panova TB, Andersen JS, Owen-Hughes TA, Russell J, Lee SC, Zomerdijk JC (2009) FACT facilitates chromatin transcription by RNA polymerases I and III. EMBO J 28:854–865

    Article  PubMed  CAS  Google Scholar 

  • Bondarenko VA, Steele LM, Ujvári A, Gaykalova DA, Kulaeva OI, Polikanov YS, Luse DS, Studitsky VM (2006) Nucleosomes can form a polar barrier to transcript elongation by RNA polymerase II. Mol Cell 24:469–479

    Article  PubMed  CAS  Google Scholar 

  • Bredfeldt TG, Greathouse KL, Safe SH, Hung MC, Bedford MT, Walker CL (2010) Xenoestrogen-induced regulation of EZH2 and histone methylation via estrogen receptor signaling to PI3K/AKT. Mol Endocrinol 24:993–1006

    Article  PubMed  CAS  Google Scholar 

  • Bromer JG, Zhou Y, Taylor MB, Doherty L, Taylor HS (2010) Bisphenol-A exposure in utero leads to epigenetic alterations in the developmental programming of uterine estrogen response. FASEB J 24:2273–2280

    Article  PubMed  CAS  Google Scholar 

  • Catez F, Yang H, Tracey KJ, Reeves R, Misteli T, Bustin M (2004) Network of dynamic interactions between histone H1 and high-mobility-group proteins in chromatin. Mol Cell Biol 24:4321–4328

    Article  PubMed  CAS  Google Scholar 

  • Choi JK, Kim YJ (2008) Epigenetic regulation and the variability of gene expression. Nat Genet 40:141–147

    Article  PubMed  CAS  Google Scholar 

  • Choi JK, Kim YJ (2009) Intrinsic variability of gene expression encoded in nucleosome positioning sequences. Nat Genet 41:498–503

    Article  PubMed  CAS  Google Scholar 

  • Dammann R, Li C, Yoon JH, Chin PL, Bates S, Pfeifer GP (2000) Epigenetic inactivation of a RAS association domain family protein from the lung tumour suppressor locus 3p21.3. Nat Genet 25:315–319

    Article  PubMed  CAS  Google Scholar 

  • Dekker J (2008) Gene regulation in the third dimension. Science 319:1793–1794

    Article  PubMed  CAS  Google Scholar 

  • Dolinoy DC, Huang D, Jirtle RL (2007) Maternal nutrient supplementation counteracts bisphenol A-induced DNA hypomethylation in early development. Proc Natl Acad Sci U S A 104:13056–13061

    Article  PubMed  CAS  Google Scholar 

  • Dundr M, Ospina JK, Sung MH, John S, Upender M, Ried T, Hager GL, Matera AG (2007) Actin-dependent intranuclear repositioning of an active gene locus in vivo. J Cell Biol 179:1095–1103

    Article  PubMed  CAS  Google Scholar 

  • Ernst J, Kheradpour P, Mikkelsen TS, Shoresh N, Ward LD, Epstein CB, Zhang X, Wang L, Issner R, Coyne M, Ku M, Durham T, Kellis M, Bernstein BE (2011) Mapping and analysis of chromatin state dynamics in nine human cell types. Nature 473:43–49

    Article  PubMed  CAS  Google Scholar 

  • Espinoza CA, Ren B (2011) Mapping higher order structure of chromatin domains. Nat Genet 43:615–616

    Article  PubMed  CAS  Google Scholar 

  • Feinberg AP (2007) Phenotypic plasticity and the epigenetics of human disease. Nature 447:433–440

    Article  PubMed  CAS  Google Scholar 

  • Feinberg AP, Vogelstein B (1983) Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 301:89–92

    Article  PubMed  CAS  Google Scholar 

  • Felsenfeld G, Burgess-Beusse B, Farrell C, Gaszner M, Ghirlando R, Huang S, Jin C, Litt M, Magdinier F, Mutskov V, Nakatani Y, Tagami H, West A, Yusufzai T (2004) Chromatin boundaries and chromatin domains. Cold Spring Harb Symp Quant Biol 69:245–250

    Article  PubMed  CAS  Google Scholar 

  • Fouse SD, Shen Y, Pellegrini M, Cole S, Meissner A, Van Neste L, Jaenisch R, Fan G (2008) Promoter CpG methylation contributes to ES cell gene regulation in parallel with Oct4/Nanog, PcG complex, and histone H3K4/K27 trimethylation. Cell Stem Cell 2:160–169

    Article  PubMed  CAS  Google Scholar 

  • Fussner E, Ching RW, Bazett-Jones DP (2011) Living without 30 nm chromatin fibers. Trends Biochem Sci 36:1–6

    Article  PubMed  CAS  Google Scholar 

  • Georgel PT, Horowitz-Scherer RA, Adkins N, Woodcock CL, Wade PA, Hansen JC (2003) Chromatin compaction by human MeCP2 – assembly of novel secondary chromatin structures in the absence of DNA methylation. J Biol Chem 278:32181–32188

    Article  PubMed  CAS  Google Scholar 

  • Gluckman PD, Hanson MA, Cooper C, Thornburg KL (2008) Effect of in utero and early-life conditions on adult health and disease. N Engl J Med 359:61–73

    Article  PubMed  CAS  Google Scholar 

  • Grunstein M (1997) Histone acetylation in chromatin structure and transcription. Nature 389:349–352

    Article  PubMed  CAS  Google Scholar 

  • Guelen L, Pagie L, Brasset E, Meuleman W, Faza MB, Talhout W, Eussen BH, de Klein A, Wessels L, de Laat W, van Steensel B (2008) Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature 453:948–951

    Article  PubMed  CAS  Google Scholar 

  • Handoko L, Xu H, Li G, Ngan CY, Chew E, Schnapp M, Lee CW, Ye C, Ping JL, Mulawadi F, Wong E, Sheng J, Zhang Y, Poh T, Chan CS, Kunarso G, Shahab A, Bourque G, Cacheux-Rataboul V, Sung WK, Ruan Y, Wei CL (2011) CTCF-mediated functional chromatin interactome in pluripotent cells. Nat Genet 43:630–638

    Article  PubMed  CAS  Google Scholar 

  • Hawkins RD, Hon GC, Lee LK, Ngo Q, Lister R, Pelizzola M, Edsall LE, Kuan S, Luu Y, Klugman S, Antosiewicz-Bourget J, Ye Z, Espinoza C, Agarwahl S, Shen L, Ruotti V, Wang W, Stewart R, Thomson JA, Ecker JR, Ren B (2010) Distinct epigenomic landscapes of pluripotent and lineage-committed human cells. Cell Stem Cell 6:479–491

    Article  PubMed  CAS  Google Scholar 

  • Heijmans BT, Tobi EW, Lumey LH, Slagboom PE (2009) The epigenome archive of the prenatal environment. Epigenetics 4:526–531

    Article  PubMed  CAS  Google Scholar 

  • Hendzel MJ, Lever MA, Crawford E, Th’ng JP (2004) The C-terminal domain is the primary determinant of histone H1 binding to chromatin in vivo. J Biol Chem 279:20028–20034

    Article  PubMed  CAS  Google Scholar 

  • Hisaoka M, Ueshima S, Murano K, Nagata K, Okuwaki M (2010) Regulation of nucleolar chromatin by B23/nucleophosmin jointly depends upon its RNA binding activity and transcription factor UBF. Mol Cell Biol 30:4952–4964

    Article  PubMed  CAS  Google Scholar 

  • Ioshikhes IP, Albert I, Zanton SJ, Pugh BF (2006) Nucleosome positions predicted through comparative genomics. Nat Genet 38:1210–1215

    Article  PubMed  CAS  Google Scholar 

  • Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33:245–254

    Article  PubMed  CAS  Google Scholar 

  • Jones PA, Baylin SB (2002) The fundamental role of epigenetic events in cancer. Nat Rev Genet 3:415–428

    Article  PubMed  CAS  Google Scholar 

  • Kaplan N, Moore IK, Fondufe-Mittendorf Y, Gossett AJ, Tillo D, Field Y, LeProust EM, Hughes TR, Lieb JD, Widom J, Segal E (2009) The DNA-encoded nucleosome organization of a eukaryotic genome. Nature 458:362–366

    Article  PubMed  CAS  Google Scholar 

  • Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705

    Article  PubMed  CAS  Google Scholar 

  • Kumar A, Choi KH, Renthal W, Tsankova NM, Theobald DE, Truong HT, Russo SJ, Laplant Q, Sasaki TS, Whistler KN, Neve RL, Self DW, Nestler EJ (2005) Chromatin remodeling is a key mechanism underlying cocaine-induced plasticity in striatum. Neuron 48:303–314

    Article  PubMed  CAS  Google Scholar 

  • Kundakovic M, Champagne FA (2011) Epigenetic perspective on the developmental effects of bisphenol A. Brain Behav Immun 25:1084–1093

    Article  PubMed  CAS  Google Scholar 

  • Landry CR, Lemos B, Rifkin SA, Dickinson WJ, Hartl DL (2007) Genetic properties influencing the evolvability of gene expression. Science 317:118–121

    Article  PubMed  CAS  Google Scholar 

  • LaPlant Q, Nestler EJ (2011) CRACKing the histone code: cocaine’s effects on chromatin structure and function. Horm Behav 59:321–330

    Article  PubMed  CAS  Google Scholar 

  • Li G, Reinberg D (2011) Chromatin higher-order structures and gene regulation. Curr Opin Genet Dev 21:175–186

    Article  PubMed  CAS  Google Scholar 

  • Luger K (2003) Structure and dynamic behavior of nucleosomes. Curr Opin Genet Dev 13:127–135

    Article  PubMed  CAS  Google Scholar 

  • Meissner A, Mikkelsen TS, Gu H, Wernig M, Hanna J, Sivachenko A, Zhang X, Bernstein BE, Nusbaum C, Jaffe DB, Gnirke A, Jaenisch R, Lander ES (2008) Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 454:766–770

    PubMed  CAS  Google Scholar 

  • Mikkelsen TS, Ku M, Jaffe DB, Issac B, Lieberman E, Giannoukos G, Alvarez P, Brockman W, Kim TK, Koche RP, Lee W, Mendenhall E, O'Donovan A, Presser A, Russ C, Xie X, Meissner A, Wernig M, Jaenisch R, Nusbaum C, Lander ES, Bernstein BE (2007) Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448:553–560

    Article  PubMed  CAS  Google Scholar 

  • Murgatroyd C, Patchev AV, Wu Y, Micale V, Bockmühl Y, Fischer D, Holsboer F, Wotjak CT, Almeida OF, Spengler D (2009) Dynamic DNA methylation programs persistent adverse effects of early-life stress. Nat Neurosci 12:1559–1566

    Article  PubMed  CAS  Google Scholar 

  • Reinberg D, Sims RJ III (2006) de FACTo nucleosome dynamics. J Biol Chem 281:23297–23301

    Article  PubMed  CAS  Google Scholar 

  • Sanyal A, Baù D, Martí-Renom MA, Dekker J (2011) Chromatin globules: a common motif of higher order chromosome structure? Curr Opin Cell Biol 23:325–331

    Article  PubMed  CAS  Google Scholar 

  • Segal E, Fondufe-Mittendorf Y, Chen L et al (2006) A genomic code for nucleosome positioning. Nature 442:772–778

    Article  PubMed  CAS  Google Scholar 

  • Shogren-Knaak M, Ishii H, Sun JM, Pazin MJ, Davie JR, Peterson CL (2006) Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science 311:844–847

    Article  PubMed  CAS  Google Scholar 

  • Skene PJ, Illingworth RS, Webb S, Kerr AR, James KD, Turner DJ, Andrews R, Bird AP (2010) Neuronal MeCP2 is expressed at near histone-octamer levels and globally alters the chromatin state. Mol Cell 37:457–468

    Article  PubMed  CAS  Google Scholar 

  • Sutherland JE, Costa M (2003) Epigenetics and the environment. Ann N Y Acad Sci 983: 151–160.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki MM, Bird A (2008) DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet 9:465–476

    Article  PubMed  CAS  Google Scholar 

  • Tirosh I, Barkai N (2008) Two strategies for gene regulation by promoter nucleosomes. Genome Res 18:1084–1091

    Article  PubMed  CAS  Google Scholar 

  • Tobi EW, Lumey LH, Talens RP, Kremer D, Putter H, Stein AD, Slagboom PE, Heijmans BT (2009) DNA methylation differences after exposure to prenatal famine are common and timing- and sex-specific. Hum Mol Genet 18:4046–4053

    Article  PubMed  CAS  Google Scholar 

  • Tremethick DJ (2007) Higher-order structures of chromatin: the elusive 30 nm fiber. Cell 128:651–654

    Article  PubMed  CAS  Google Scholar 

  • Tse C, Sera T, Wolffe AP, Hansen JC (1998) Disruption of higher-order folding by core histone acetylation dramatically enhances transcription of nucleosomal arrays by RNA polymerase III. Mol Cell Biol 18:4629–4638

    PubMed  CAS  Google Scholar 

  • Ueda T, Yoshida M (2010) HMGB proteins and transcriptional regulation. Biochim Biophys Acta-Gene Regul Mech 1799:114–118

    Article  CAS  Google Scholar 

  • Villeneuve LM, Reddy MA, Natarajan R (2011) Epigenetics: deciphering its role in diabetes and its chronic complications. Clin Exp Pharmacol Physiol 38:401–409

    Article  CAS  Google Scholar 

  • Vintermist A, Böhm S, Sadeghifar F, Louvet E, Mansén A, Percipalle P, Ostlund Farrants AK (2011) The chromatin remodelling complex B-WICH changes the chromatin structure and recruits histone acetyl-transferases to active rRNA genes. PLoS One 6:e19184

    Article  PubMed  CAS  Google Scholar 

  • Visel A, Blow MJ, Li Z, Zhang T, Akiyama JA, Holt A, Plajzer-Frick I, Shoukry M, Wright C, Chen F, Afzal V, Ren B, Rubin EM, Pennacchio LA (2009) ChIP-seq accurately predicts tissue-specific activity of enhancers. Nature 457:854–858

    Article  PubMed  CAS  Google Scholar 

  • Walker CL (2011) Epigenomic reprogramming of the developing reproductive tract and disease susceptibility in adulthood. Birth Defects Res A Clin Mol Teratol 91:666–671

    Article  PubMed  CAS  Google Scholar 

  • Widom J (2001) Role of DNA sequence in nucleosome stability and dynamics. Q Rev Biophys 34:269–324

    Article  PubMed  CAS  Google Scholar 

  • Winkler DD, Luger K (2011) The histone chaperone FACT: structural insights and mechanisms for nucleosome reorganization. J Biol Chem 286:18369–18374

    Article  PubMed  CAS  Google Scholar 

  • Xin H, Takahata S, Blanksma M, McCullough L, Stillman DJ, Formosa T (2009) yFACT induces global accessibility of nucleosomal DNA without H2A-H2B displacement. Mol Cell 35:365–376

    Article  PubMed  CAS  Google Scholar 

  • Zhou VW, Goren A, Bernstein BE (2011) Charting histone modifications and the functional organization of mammalian genomes. Nat Rev Genet 12:7–18

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul A. Wade .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Adomas, A.B., Wade, P.A. (2013). Chromatin Structure and Gene Expression: Function Follows Form. In: Jirtle, R., Tyson, F. (eds) Environmental Epigenomics in Health and Disease. Epigenetics and Human Health. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23380-7_8

Download citation

Publish with us

Policies and ethics