Fundamentals of Intermediate Band Solar Cells

  • Antonio Martí
  • Antonio Luque
Part of the Springer Series in Optical Sciences book series (SSOS, volume 165)


Intermediate band solar cells aim to exploit the energy of below bandgap energy photons. They are based on materials that are characterised by the existence of an additional electronic band (intermediate band) located in between the conduction and valence band. An optimised IBSC has near the same limiting efficiency potential (63.2%) than a triple junction solar cells but without requiring tunnel junctions to connect the single gap solar cells. This chapter reviews its fundamental theory and introduces the different approaches that are being followed towards its implementation: quantum dots, the insertion of suitable impurities into a semiconductor host at sufficiently high densities (bulk approach) and the molecular approaches.


Solar Cell Conduction Band Mott Transition Deep Centre Voltage Loss 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Authors acknowledge the financial support of the European Project IBPOWER (211640) to carry out their research on intermediate band solar cells.


  1. 1.
    A. Luque, A. Martí, E. Antolín, C. Tablero, Phy. B-Condens. Matter 382(1–2), 320 (2006). doi: 10.1016/j.physb.2006.03.006Google Scholar
  2. 2.
    E. Antolín, A. Martí, J. Olea, D. Pastor, G. González-Díaz, I. Martil, A. Luque, Appl. Phys. Lett. 94(4), 042115 (2009)ADSCrossRefGoogle Scholar
  3. 3.
    R. Strandberg, T.W. Reenaas, J. Appl. Phys. 105(12), 124512 (2009). doi: 10.1063/1. 3153141ADSCrossRefGoogle Scholar
  4. 4.
    A. Martí, E. Antolín, E. Cánovas, N. López, P. Linares, A. Luque, C. Stanley, C. Farmer, Thin Solid Films 516(20), 6716 (2008); Proceedings on Adv. Mater. and Concepts for Photovoltaics EMRS 2007 Conference, Strasbourg, FranceGoogle Scholar
  5. 5.
    A. Luque, A. Martí, Phys. Rev. Lett. 78(26), 5014 (1997)ADSCrossRefGoogle Scholar
  6. 6.
    A. Luque, A. Martí, Progr. Photovoltaics 9(2), 73 (2001)CrossRefGoogle Scholar
  7. 7.
    A. Martí, D.F. Marrón, A. Luque, J. Appl. Phys. 103(7), 073706 (2008). doi: 10.1063/1.2901213ADSCrossRefGoogle Scholar
  8. 8.
    R. Strandberg, T.W. Reenaas, Appl. Phys. Lett. 97(3), 031910 (2010). doi: 10.1063/1. 3466269.
  9. 9.
    M.J. Caldas, A. Fazzio, A. Zunger, Appl. Phys. Lett. 45(6), 671 (1984)ADSCrossRefGoogle Scholar
  10. 10.
    M. Wolf, Sol. Energ. 5(3), 83 (1961)CrossRefGoogle Scholar
  11. 11.
    A. Martí, L. Cuadra, A. Luque, in Intermediate Band Solar Cells, Next Generation Photovoltaics: High Efficiency through Full Spectrum Utilization, ed. by A. Marti, A. Luque. (Institute of Physics Publishing, Bristol, 2003), pp. 140–162CrossRefGoogle Scholar
  12. 12.
    A. Martí, C.R. Stanley, A. Luque, Intermediate Band Solar Cells (IBSC) Using Nanotechnolgy (Elsevier, Amsterdam, 2006), chap. 17Google Scholar
  13. 13.
    R. Winston, W.T. Welford, Optics of Non Imaging Concentrators (Academic, San Diego, 1979)Google Scholar
  14. 14.
    L. Cuadra, A. Martí, A. Luque, IEEE Trans. Electron Dev. 51(6), 1002 (2004). doi: 10.1109/TED.2004.828161Google Scholar
  15. 15.
    L. Cuadra, A. Martí, A. Luque, Modelling of the adsorption coefficient of the intermediate band solar cell, in Proceedings of the 16th European Photovoltaic specialist Conference held in Glasgow. (Taylor & Francis Group, Oxford, 2000)Google Scholar
  16. 16.
    A. Martí, L. Cuadra, A. Luque, Quantum dot analysis of the space charge region of intermediate band solar cell, in Proceedings of the 199th Electrochemical Society Meeting. (The Electrochemical Society, Pennington, 2001), pp. 46–60Google Scholar
  17. 17.
    A. Luque, A. Martí, N. López, E. Antolín, E. Cánovas, C.R. Stanley, C. Farmer, P. Díaz, J. Appl. Phys. 99(1), 094503 (2006)ADSCrossRefGoogle Scholar
  18. 18.
    A. Martí, L. Cuadra, A. Luque, IEEE Trans. Electron Dev. 49(9), 1632 (2002). doi: 10.1109/TED.2002.802642Google Scholar
  19. 19.
    A. Martí, E. Antolín, E. Cánovas, P.G. Linares, A. Luque, MRS Proceedings, Spring Meeting, San Francisco, vol. 1101E, pp. KK06 (2008)Google Scholar
  20. 20.
    I. Tobías, A. Luque, A. Martí, J. Appl. Phys. 104(3), 034502 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    A. Mellor, I. Tobías, A. Luque, A. Martí, M.J. Mendes, Upper limits to adsorption enhancement in thick solar cells using diffraction gratings, Progress in Photovoltaics: Research and Applications, Vol. 19, pp. 676–687Google Scholar
  22. 22.
    A. Luque, A. Martí, M.J. Mendes, I. Tobías, J. Appl. Phys. 104(11), 113118 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    M.J. Mendes, A. Luque, I. Tobías, A. Martí, Appl. Phys. Lett. 95(7), 071105 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    A. Martí, L. Cuadra, and A. Luque, Quantum dot intermediate band solar cells in Photovoltaic Specialists Conference, 2000. Conference Record of the Twenty-Eighth IEEE, held in Anchorage, 2000 pp. 940–943.Google Scholar
  25. 25.
    J. Loehr, M. Manasreh, Semiconductor Quantum Wells and Superlattices for Long-Wavelength Infrared Detectors (Artech House, Boston, 1993)Google Scholar
  26. 26.
    A. Martí, L. Cuadra, A. Luque, Physica E 14, 150 (2002)ADSCrossRefGoogle Scholar
  27. 27.
    A. Martí, N. López, E. Antolín, E. Cánovas, C. Stanley, C. Farmer, L. Cuadra, A. Luque, Thin Solid Films 511–512, 638 (2006). doi: 10.1016/j.tsf.2005.12.122.; EMSR 2005 – Proceedings of Symposium F on Thin Film and Nanostructured Materials for Photovoltaics – EMRS 2005 – Symposium F
  28. 28.
    A. Luque, A. Martí, N. López, E. Antolín, E. Cánovas, C. Stanley, C. Farmer, L.J. Caballero, L. Cuadra, J.L. Balenzategui, Appl. Phys. Lett. 87(8), 083505 (2005)ADSCrossRefGoogle Scholar
  29. 29.
    A. Martí, E.A. n, C.R. Stanley, C.D. Farmer, N. López, P. Díaz, E. Cánovas, P.G. Linares, A. Luque, Phys. Rev. Lett. 97(24), 247701 (2006)Google Scholar
  30. 30.
    V. Popescu, G. Bester, M.C. Hanna, A.G. Norman, A. Zunger, Phys. Rev. B 78, 205321 (2008)ADSCrossRefGoogle Scholar
  31. 31.
    S.M. Hubbard, C.D. Cress, C.G. Bailey, R.P. Raffaelle, S.G. Bailey, D.M. Wilt, Appl. Phys. Lett. 92(12), 123512 (2008)ADSCrossRefGoogle Scholar
  32. 32.
    R. Oshima, A. Takata, Y. Okada, Appl. Phys. Lett. 93(8), 083111 (2008)ADSCrossRefGoogle Scholar
  33. 33.
    S. Blokhin, A. Sakharov, A. Nadtochy, A. Pauysov, M. Maximov, N. Ledentsov, A. Kovsh, S. Mikhrin, V. Lantratov, S. Mintairov, N. Kaluzhniy, M. Shvarts, Phys. Semiconduct. Tech. 43(4), 537 (2009)Google Scholar
  34. 34.
    A. Luque, A. Martí, C. Stanley, N. López, L. Cuadra, D. Zhou, J.L. Pearson, A. McKee, J. Appl. Phys. 96(1), 903 (2004)ADSCrossRefGoogle Scholar
  35. 35.
    D. Guimard, R. Morihara, D. Bordel, K. Tanabe, Y. Wakayama, M. Nishioka, Y. Arakawa, Appl. Phys. Lett. 96(20), 203507 (2010). doi: 10.1063/1.3427392. ?APL/96/203507/1Google Scholar
  36. 36.
    A. Luque, A. Martí, The intermediate band solar cell: progress toward the realization of an attractive concept. Adv. Mater. 22, 160–174 (2010)CrossRefGoogle Scholar
  37. 37.
    A. Luque, P.G. Linares, E. Antolín, E. Cánovas, C.D. Farmer, C.R. Stanley, A. Martí, Appl. Phys. Lett. 96(1), 013501 (2010)ADSCrossRefGoogle Scholar
  38. 38.
    A. Martí, N. López, E. Antolín, E. Cánovas, A. Luque, C.R. Stanley, C.D. Farmer, P. Díaz, Appl. Phys. Lett. 90(23), 233510 (2007)ADSCrossRefGoogle Scholar
  39. 39.
    S.M. Hubbard, C.G. Bailey, C.D. Cress, S. Polly, J. Clark, D.V. Forbes, R.P. Raffaelle, S.G. Bailey, and D.M. Wilt, Short circuit current enhancement of GaAs solar cells using strain compensated InAs quantum dots in Conference Records of the 33rd Photovoltaic Specialists Conference held in San Diego, IEEE, 2008, pp. 1–6Google Scholar
  40. 40.
    A. Luque, A. Martí, L. Cuadra, IEEE Trans. Electron Dev. 48(9), 2118 (2001)ADSCrossRefGoogle Scholar
  41. 41.
    A. Luque, A. Martí, L. Cuadra, IEEE Trans. Electron Dev. 50(2), 447 (2003)ADSCrossRefGoogle Scholar
  42. 42.
    E. Antolín, A. Martí, P.G. Linares, I. Ramiro, E. Hernández, C.D. Farmer, C.R. Stanley, and A. Luque, Advances in quantum dot intermediate band solar cells, in Conference Record of 35th IEEE Photovoltaic Specialists Conference (PVSC), 2010, Honolu, pp. 65–70Google Scholar
  43. 43.
    J. Wu, D. Shao, Z. Li, M.O. Manasreh, V.P. Kunets, Z.M. Wang, G.J. Salamo, Appl. Phys. Lett. 95(7), 071908 (2009)ADSCrossRefGoogle Scholar
  44. 44.
    S. Tomic, T.S. Jones, N.M. Harrison, Appl. Phys. Lett. 93(26), 263105 (2008)ADSCrossRefGoogle Scholar
  45. 45.
    P. Palacios, K. Sánchez, J.C. Conesa, J.J. Fernández, P. Wahnón, Thin Solid Films 515(15), 6280 (2007)ADSCrossRefGoogle Scholar
  46. 46.
    B. Marsen, L. Steinkopf, I. Lauermann, M. Gorgoi, H. Wilhelm, T. Unold, R. Scheer, H.W. Schock, E-MRS Spring Meeting; Symp B, Strasbourg (2009)Google Scholar
  47. 47.
    A. Martí, C. Tablero, E. Antolín, A. Luque, R.P. Campion, S.V. Novikov, C.T. Foxon, Sol. Energ. Mater. Sol. cell. 93(5), 641 (2009). doi: 10.1016/j.solmat.2008.12.031CrossRefGoogle Scholar
  48. 48.
    K.M. Yu, W. Walukiewicz, J. Wu, W. Shan, J.W. Beeman, M.A. Scarpulla, O.D. Dubon, P. Becla, Phys. Rev. Lett. 91(24), 246403 (2003)ADSCrossRefGoogle Scholar
  49. 49.
    W. Shan, W. Walukiewicz, J.W. Ager, E.E. Haller, J.F. Geisz, D.J. Friedman, J.M. Olson, S.R. Kurtz, Phys. Rev. Lett. 82(6), 1221 (1999); Copyright (C) 2007 The American Physical Society Please report any problems to PRLGoogle Scholar
  50. 50.
    K.M. Yu, W. Walukiewicz, J.W. Ager, D. Bour, R. Farshchi, O.D. Dubon, S.X. Li, I.D. Sharp, E.E. Haller, Appl. Phys. Lett. 88(9), 092110 (2006)ADSCrossRefGoogle Scholar
  51. 51.
    N. López, L.A. Reichertz, K.M. Yu, K. Campman, W. Walukiewicz, Phys. Rev. Lett. 106(2), 028701 (2011). doi: 10.1103/PhysRevLett.106.028701ADSCrossRefGoogle Scholar
  52. 52.
    E. Cánovas, A.Martí, A.Luque, W. Walukiewicz, Appl. Phys. Lett 93, 174109 (2008)ADSCrossRefGoogle Scholar
  53. 53.
    W. Wang, A.S. Lin, J.D. Phillips, Appl. Phys. Lett. 95(1), 011103 (2009)ADSCrossRefGoogle Scholar
  54. 54.
    W. Wang, A.S. Lin, J.D. Phillips, W.K. Metzger, Appl. Phys. Lett. 95(26), 261107 (2009)ADSCrossRefGoogle Scholar
  55. 55.
    N.J. Ekins-Daukes, T.W. Schmidt, Appl. Phys. Lett. 93(6), 063507 (2008)ADSCrossRefGoogle Scholar
  56. 56.
    M. Grätzel, J. Photochem. Photobiol. C Photochem. Rev. 4, 145 (2003)CrossRefGoogle Scholar
  57. 57.
    P. Palacios, I. Aguilera, K. Sánchez, J.C. Conesa, P. Wahnón, Phys. Rev. Lett. 101(4), 046403 (2008)ADSCrossRefGoogle Scholar
  58. 58.
    R. Lucena, I. Aguilera, P. Palacios, P. Wahnón, J.C. Conesa, Chem. Maters 20, 5125 (2008)CrossRefGoogle Scholar
  59. 59.
    P. Palacios, J.J.F. ndez, K. Sánchez, J.C. Conesa, P. Wahnón, Phys. Rev. B (Condens. Matter Mater. Phys.) 73(8), 085206 (2006)Google Scholar
  60. 60.
    P. Palacios, P. Wahnón, S. Pizzinato, J.C. Conesa, J. Chem. Phys. 124(1), 14711 (2006)ADSCrossRefGoogle Scholar
  61. 61.
    A. Martí et al., Proceedings of 34th IEEE PVSC (2009)Google Scholar
  62. 62.
    P. Olsson, C. Domain, J.F. Guillemoles, Phys. Rev. Lett. 102, 227204 (2009)ADSCrossRefGoogle Scholar
  63. 63.
    C. Tablero, Sol. Energ. Mater. Sol. Cell. 90(5), 588 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Instituto de Energía SolarUniversidad Politécnica de MadridMadridSpain
  2. 2.Instituto de Energía SolarUniversidad Politécnica de MadridMadridSpain

Personalised recommendations