Advertisement

Non-Coherent Up-Conversion in Multi-Component Organic Systems

  • Stanislav Baluschev
  • Tzenka Miteva
Chapter
Part of the Springer Series in Optical Sciences book series (SSOS, volume 165)

Abstract

The requirements for observing efficient energetically conjoined triplet–triplet annihilation (TTA) up-conversion (UC) in multi-component organic system are stated. The fundamental advantages of the TTA–UC regarding the other up-conversion techniques in the context of solar photonic applications are established. The device-architecture, optical and electrical characteristics of a photonic device comprised of a combination of upconvertor-device (UCd) and dye sensitized solar cell (DSSC) excited with sunlight are demonstrated.

Keywords

Triplet State Excitation Intensity Excited Triplet State Sensitizer Molecule Sensitizer Triplet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Y. Shen, The Principles of Nonlinear Optics (Wiley, New York, 2002)Google Scholar
  2. 2.
    F. Auzel, Chem. Rev. 104(1), 139 (2004)CrossRefGoogle Scholar
  3. 3.
    J.C. Boyer, L.A. Cuccia, J.A. Capobianco, Nano Lett. 7(3), 847 (2007)ADSCrossRefGoogle Scholar
  4. 4.
    A. Shalav, B.S. Richards, M.A. Green, Sol. Energ. Mater. Sol. Cell. 91(9), 829 (2007)CrossRefGoogle Scholar
  5. 5.
    T. Trupke, A. Shalav, P. Wrfel, M.A. Green, Sol. Energ. Mater. Sol. Cell. 90(18–19), 3327 (2006)CrossRefGoogle Scholar
  6. 6.
    T. Miteva, A. Meisel, W. Knoll, H.G. Nothofer, U. Scherf, D.C. Mueller, K. Meerholz, A. Yasuda, D. Neher, Adv. Mater. 13(8), 565 (2001)CrossRefGoogle Scholar
  7. 7.
    R. Pacios, D.D.C. Bradley, J. Nelson, C. Brabec, Synthetic Metals 137(1–3), 1469 (2003)CrossRefGoogle Scholar
  8. 8.
    R. Schroeder, B. Ullrich, W. Graupner, U. Scherf, J. Phys. Condens. Matter 13(16), L313 (2001)ADSCrossRefGoogle Scholar
  9. 9.
    P. Keivanidis, S. Baluschev, G.N.G.W. T. Miteva, A. Yasuda, Adv. Mater. 15(24), 2095 (2003)Google Scholar
  10. 10.
    F. Laquai, G. Wegner, C. Im, A. Büsing, S. Heun, J. Chem. Phys. 123(7), 074902 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    S. Baluschev, P.E. Keivanidis, G. Wegner, J. Jacob, A.C. Grimsdale, K. Müllen, Appl. Phys. Lett. 86(6), 061904 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    S. Baluschev, J. Jacob, Y.S. Avlasevich, P.E. Keivanidis, T. Miteva, A. Yasuda, G. Nelles, A.C. Grimsdale, K. Müllen, G. Wegner, ChemPhysChem 6(7), 1250 (2005)CrossRefGoogle Scholar
  13. 13.
    M. Pope, C. Swenberg, Electronic Processes in Organic Crystals (Oxford University Press, New York, 1982)Google Scholar
  14. 14.
    J. Kalinowski, W. Stampor, M. J., M. Cocchi, D. Virgili, V. Fattori, P. Di Marco, Phys. Rev. B 66(23), 235321 (2002)Google Scholar
  15. 15.
    M.A. Baldo, C. Adachi, S. Forrest, Phys. Rev. B 62(16), 10967 (2000)ADSCrossRefGoogle Scholar
  16. 16.
    S. Baluschev, T. Miteva, B. Minch, V. Yakutkin, G. Nelles, A. Yasuda, G. Wegner, J. Appl. Phys. 101(2), 023101 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    D. Wasserberg, S.P. Dudek, S.C.J. Meskers, R.A.J. Janssen, Chem. Phys. Lett. 411(1–3), 273 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    S. Baluschev, T. Miteva, V. Yakutkin, G. Nelles, A. Yasuda, G. Wegner, Phys. Rev. Lett. 97(14), 143903 (2006)ADSCrossRefGoogle Scholar
  19. 19.
    S. Baluschev, T. Miteva, V. Yakutkin, G. Nelles, S. Chernov, A. Aleshchenkov, A. Cheprakov, A. Yasuda, G. Wegner, Appl. Phys. Lett. 90(18), 181103 (2007)ADSCrossRefGoogle Scholar
  20. 20.
    S. Baluschev, V. Yakutkin, T. Miteva, G. Wegner, T. Roberts, G. Nelles, A. Yasuda, S. Chernov, S. Aleshchenkov, A. Cheprakov, New J. Phys. 10, 013007 (2008)CrossRefGoogle Scholar
  21. 21.
    S. Baluschev, V. Yakutkin, T. Miteva, T. Avlasevich, S. Chernov, S. Aleshchenkov, G. Nelles, A. Cheprakov, A. Yasuda, K. Müllen, G. Wegner, Angewandte Chemie 46, 7693 (2007)CrossRefGoogle Scholar
  22. 22.
    V. Yakutkin, S. Aleshchenkov, S. Chernov, T. Miteva, G. Nelles, A. Cheprakov, S. Baluschev, Chem. Eur. J. 14, 9846 (2008)CrossRefGoogle Scholar
  23. 23.
    M. Kasha, Discussions Faraday Soc. 9, 14 (1950)CrossRefGoogle Scholar
  24. 24.
    R.L. Fulton, M. Gouterman, J. Chem. Phys. 35(3), 1059 (1961)ADSCrossRefGoogle Scholar
  25. 25.
    A. Terenin, V. Ermolaev, Trans. Faraday Soc. 52, 1042 (1956)CrossRefGoogle Scholar
  26. 26.
    C.A. Parker, C.G. Hatchard, T.A. Joyce, Nature 205(4978), 1282 (1965)ADSCrossRefGoogle Scholar
  27. 27.
    J. Mezyk, R. Tubino, A. Monguzzi, A. Mech, F. Meinardi, Phys. Rev. Lett. 102(8), 087404 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    A. Monguzzi, R. Tubino, F. Meinardi, J. Phys. Chem. A 113(7), 1171 (2009)CrossRefGoogle Scholar
  29. 29.
    J.A. OBrien, S. Rallabandi, U. Tripathy, M.F. Paige, R.P. Steer, Chem. Phys. Lett. 475(4–6), 220 (2009)Google Scholar
  30. 30.
    R. Islangulov, J. Lott, C. Weder, F.N. Castellano, J. Am. Chem. Soc. 129(42), 12652 (2007)CrossRefGoogle Scholar
  31. 31.
    S. Baluschev, T. Miteva, B. Minch, V. Yakutkin, G. Nelles, A. Yasuda, G. Wegner, J. Appl. Phys. 102(7), 076103 (2007)ADSCrossRefGoogle Scholar
  32. 32.
    D.V. Kozlov, F.N. Castellano, Anti-Stokes delayed fluorescence from metal-organic bichromophores. Chem. Commun. (24), 2860–2861 (2004). doi: 10.1039/b412681eCrossRefGoogle Scholar
  33. 33.
    J.B. Birks, Photophysics of Aromatic Molecules (Wiley, New York, 1970)Google Scholar
  34. 34.
    M. Ariu, D.G. Lidzey, M. Sims, A.J. Cadby, P. Lane, D.D.C. Bradley, J. Phys. Condens. Matter 14(42), 9975 (2002)ADSCrossRefGoogle Scholar
  35. 35.
    J.Y. Kim, K. Lee, N.E. Coates, D. Moses, T.Q. Nguyen, M. Dante, A.J. Heeger, Science 317(5835), 222 (2007)ADSCrossRefGoogle Scholar
  36. 36.
    A. Luque, A. Martí, Phys. Rev. Lett. 78(26), 5014 (1997)ADSCrossRefGoogle Scholar
  37. 37.
    M. Durr, A. Bamedi, A. Yasuda, G. Nelles, Appl. Phys. Lett. 84(17), 3397 (2004)ADSCrossRefGoogle Scholar
  38. 38.
    O.S. Finikova, A.V. Cheprakov, P.J. Carroll, S.A. Vinogrado, J. Organ. Chem. 68(19), 7517 (2003)CrossRefGoogle Scholar
  39. 39.
    N. Kobayashi, W.A. Nevin, S. Mizunuma, H. Awaji, M. Yamaguchi, Chem. Phys. Lett. 205(1), 51 (1993)ADSCrossRefGoogle Scholar
  40. 40.
    E. Downing, L. Hesselink, J. Ralston, R. Macfarlane, Science 273(5279), 1185 (1996)ADSCrossRefGoogle Scholar
  41. 41.
    A. Rapaport, J. Miliez, M. Bass, A. Cassanho, H. Jensen, J. Display Technol. 2(1), 68 (2006)ADSCrossRefGoogle Scholar
  42. 42.
    R. Koeppe, N.S. Sariciftci, A. Büchtemann, Appl. Phys. Lett. 90(18), 181126 (2007)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Max-Planck-Institute for Polymer ResearchMainzGermany
  2. 2.Optics and Spectroscopy Department, Faculty of PhysicsSofia University “St. Kliment Ochridski”SofiaBulgaria
  3. 3.Sony DeutschlandGmbH, Materials Science LaboratoryStuttgartGermany

Personalised recommendations