Ion Implant Technology for Intermediate Band Solar Cells

  • Javier Olea
  • David Pastor
  • María Toledano Luque
  • Ignacio Mártil
  • Germán González Díaz
Part of the Springer Series in Optical Sciences book series (SSOS, volume 165)


This chapter describes the creation of an Intermediate Band (IB) on single crystal silicon substrates by means of high-dose Ti implantation and subsequent Pulsed Laser Melting (PLM). The Ti concentration over the Mott limit is confirmed by Time-of-Flight Secondary Ion Mass Spectroscopy (ToF-SIMS) measurements and the recovery of the crystallinity after annealing by means of Glancing Incidence X Ray Diffraction (GIXRD) and Transmission Electron Microscopy (TEM). Rutherford Backscattering Spectroscopy (RBS) measurements show that most of the atoms are located interstitially. Analysis of the sheet resistance and mobility measured using the van der Pauw geometry shows a temperature-dependent decoupling between the implanted layer and the substrate. This decoupling and the high laminated conductivity of the implanted layer could not be explained except if we assume that an IB has been formed in the semiconductor. A specific model for the bilayer electrical behaviour has been developed. The fitting of this model and also the simulation of the sheet resistance with the ATLAS code allow to determine that the IB energetic position is located around 0.36–0.38 eV below the conduction band. Carriers at the IB have a density very similar to the Ti concentration and behave as holes with mobilities as low as 0.4 cm2 Vs− 1.


Conduction Band Sheet Resistance Hole Mobility Hall Mobility Rutherford Backscatter Spectroscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Authors would like to acknowledge the Nanotechnology and Surface Analysis Services of the Universidad de Vigo C.A.C.T.I. for ToF-SIMS measurements, the Center for Microanalysis of Materials of the Universidad Autónoma de Madrid for RBS measurements, C.A.I. de Difraccin de Rayos X of the Universidad Complutense de Madrid for GIXRD measurements, C.A.I. de Microscopa de la Universidad Complutense de Madrid for TEM analysis and C.A.I. de Técnicas Físicas of the Universidad Complutense de Madrid for ion implantation experiments. This work was made possible thanks to the FPI (Grant No. BES-2005-7063) of the Spanish Ministry of Education and Science. This work was partially supported by the Projects NUMANCIA-2 (No. S2009/ENE1477) funded by the Comunidad de Madrid GENESIS-FV (No. CSD2006-00004) funded by the Spanish Consolider National Program and by U.C.M.-C.A.M. under Grant CCG07-UCM/TIC-2804.


  1. 1.
    A. Martí, A. Luque, Next Generation Photovoltaics: High Efficiency Through Full Spectrum Utilization (Institute of Physics Publishing, Bristol, 2004)CrossRefGoogle Scholar
  2. 2.
    A. Luque, A. Martí, Phys. Rev. Lett. 78(26), 5014 (1997)ADSCrossRefGoogle Scholar
  3. 3.
    W. Shockley, H.J. Queisser, J. Appl. Phys. 32(3), 510 (1961)ADSCrossRefGoogle Scholar
  4. 4.
    A. Luque, A. Martí, N. López, E. Antolín, E. Cánovas, C. Stanley, C. Farmer, L.J. Caballero, L. Cuadra, J.L. Balenzategui, Appl. Phys. Lett. 87(8), 083505.1Google Scholar
  5. 5.
    K.M. Yu, M.A. Scarpulla, R. Farshchi, O.D. Dubon, W. Walukiewicz, Nuclear Instruments Methods Phys. Res. Section B-Beam Interactions with Mater. Atoms 261(1–2), 1150 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    N.F. Mott, Rev. Mod. Phys. 40(4), 677–683 (1968)ADSCrossRefGoogle Scholar
  7. 7.
    E.M. Conwell, Phys. Rev. 103(1), 51 (1956)ADSCrossRefGoogle Scholar
  8. 8.
    R.O. Carlson, Phys. Rev. 100(4), 1075 (1955)ADSCrossRefGoogle Scholar
  9. 9.
    S. Liu, K. Karrai, F. Dunmore, H.D. Drew, R. Wilson, G.A. Thomas, Phys. Rev. B 48(15), 11394 (1993)ADSCrossRefGoogle Scholar
  10. 10.
    A. Gaymann, H.P. Geserich, H. Vonlohneysen, Phys. Rev. Lett. 71(22), 3681 (1993)ADSCrossRefGoogle Scholar
  11. 11.
    S. Hocine, D. Mathiot, Appl. Phys. Lett. 53(14), 1269 (1988)ADSCrossRefGoogle Scholar
  12. 12.
    A. Luque, A. Martí, E. Antolín, C. Tablero, Phys. B-Condens. Matter 382(1–2), 320 (2006)ADSCrossRefGoogle Scholar
  13. 13.
    M. Hernández, J. Venturini, D. Zahorski, J. Boulmer, D. Debarre, G. Kerrien, T. Sarnet, C. Laviron, M.N. Semeria, D. Camel, J.L. Santailler, Appl. Surface Sc. 208, 345 (2003)ADSCrossRefGoogle Scholar
  14. 14.
    K.M. Yu, W. Walukiewicz, J.W. Ager, D. Bour, R. Farshchi, O.D. Dubon, S.X. Li, I.D. Sharp, E.E. Haller, Appl. Phys. Lett. 88(9), 092110.1 (2006)Google Scholar
  15. 15.
    K. Sánchez, I. Aguilera, P. Palacios, P. Wahnon, Phys. Rev. B 79(16), 165203 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    R.L. Petritz, Phys. Rev. 110(6), 1254 (1958)ADSCrossRefGoogle Scholar
  17. 17.
    D.C. Look, J. Appl. Phys. 104(6), 063718 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    D.C. Look, D.C. Walters, M.O. Manasreh, J.R. Sizelove, C.E. Stutz, K.R. Evans, Phys. Rev. B 42(6), 3578 (1990)ADSCrossRefGoogle Scholar
  19. 19.
    D.C. Look, D.C. Reynolds, J.W. Hemsky, J.R. Sizelove, R.L. Jones, R.J. Molnar, Phys. Rev. Lett. 79(12), 2273 (1997)ADSCrossRefGoogle Scholar
  20. 20.
    C.W. White, S.R. Wilson, B.R. Appleton, F.W. Young, J. Appl. Phys. 51(1), 738 (1980)ADSCrossRefGoogle Scholar
  21. 21.
    J. Olea, G. Gonzalez-Diaz, D. Pastor, I. Martil, J. Phys. D-Appl. Phys. 42(8), 085110 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    J. Olea, M. Toledano-Luque, D. Pastor, E. San-Andrés, I. Martil, González-Díaz, J. Appl. Phys. 107, 103524 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    ATLAS, Device Simulator Framework distributed by Silvaco Data Systems Inc., 4701 Patrick Henry Device, Bldg 6, Santa Clara, CA 95054Google Scholar
  24. 24.
    PSPICE, Cadence Designs Systems Inc., 2655 Seely Avenue, San Jos, CA 95134Google Scholar
  25. 25.
    D.W. Koon, Rev. Sci. Instruments 77(9), 094703 (2006)ADSCrossRefGoogle Scholar
  26. 26.
    G. Gonzalez-Díaz, J. Olea, I. Martil, D. Pastor, A. Martí, E. Antolín, A. Luque, Sol. Energ. Mater. Sol. Cell. 93(9), 1668 (2009)CrossRefGoogle Scholar
  27. 27.
    F.J. Blatt, Physics of Electronic Conduction in Solids (Mac Graw Hill, New York, 1968)Google Scholar
  28. 28.
    E. Antolín, A. Martí, J. Olea, D. Pastor, G. González-Díaz, I. Martil, A. Luque, Appl. Phys. Lett. 94(4), 042115 (2009)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Javier Olea
    • 1
  • David Pastor
    • 1
  • María Toledano Luque
    • 1
  • Ignacio Mártil
    • 1
  • Germán González Díaz
    • 2
  1. 1.Departamento de Física Aplicada III, Electricidad y ElectrónicaUniversidad Complutense de MadridMadridSpain
  2. 2.Departamento de Física Aplicada III, Electricidad y Electrónica. Facultad de Ciencias FísicasUniversidad Complutense de MadridMadridSpain

Personalised recommendations