Advertisement

3D Bragg Grating Waveguide Devices

  • Haibin Zhang
  • Peter R. Herman
Chapter
Part of the Topics in Applied Physics book series (TAP, volume 123)

Abstract

Over the past decade, ultrashort pulse laser processing has opened a large suite of photonic devices that can be formed inside bulk optical glasses by direct writing. Such processes promise rapid and seamless integration into novel three-dimensional optical circuits. One obstacle towards commercial application of this technology has been finding an effective means for inscribing high-quality grating devices. Such gratings, when embedded within the laser written waveguides, enable multi-functional spectral filters to be tailored to specific applications required in optical sensing, fiber lasers, and telecommunications. In this chapter, a new Bragg grating waveguide device is introduced that can be fabricated directly inside transparent glass materials by ultrashort laser direct writing. These Bragg grating waveguide devices are composed of arrays of partially overlapped refractive index voxels (volume pixels), defining a finely pitched segmented waveguide which simultaneously offers low-loss light guiding and strong Bragg filter resonances. Two approaches, a single-pulse writing method and a burst writing method, are introduced for inscribing the grating waveguide devices with respective low-and high-repetition rate ultrashort laser systems. Optimal laser exposure parameters are presented for fabricating high rejection notch filters (>35 dB) with narrow spectral bandwidth (0.2 nm) in the 1550-nm telecom band. Examples of Bragg grating waveguide circuits are presented for filter and sensor applications.

Keywords

Duty Cycle Second Harmonic Generation Refractive Index Change Laser Exposure Bragg Wavelength 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    K.M. Davis, K. Miura, N. Sugimoto, K. Hirao, Writing waveguides in glass with a femtosecond laser. Opt. Lett. 21, 1729–1731 (1996)ADSCrossRefGoogle Scholar
  2. 2.
    A.P. Joglekar, H.H. Liu, E. Meyhofer, G. Mourou, A.J. Hunt, Optics at critical intensity: applications to nanomorphing. Proc. Natl. Acad. Sci. U.S.A. 101, 5856–5861 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    K. Itoh, W. Watanabe, S. Nolte, C.B. Schaffer, Ultrafast processes for bulk modification of transparent materials. MRS Bull. 31, 620–625 (2006)CrossRefGoogle Scholar
  4. 4.
    K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, K. Hirao, Photowritten optical waveguides in various glasses with ultrashort pulse laser. Appl. Phys. Lett. 71, 3329 (1997)ADSCrossRefGoogle Scholar
  5. 5.
    L. Shah, A.Y. Arai, S. Eaton, P. Herman, Waveguide writing in fused silica with a femtosecond fiber laser at 522 nm and 1 MHz repetition rate. Opt. Express 13, 1999–2006 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    A.H. Nejadmalayeri, P.R. Herman, J. Burghoff, M. Will, S. Nolte, A. Tunnermann, Inscription of optical waveguides in crystalline silicon by mid-infrared femtosecond laser pulses. Opt. Lett. 30, 964–966 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    S. Nolte, M. Will, B.N. Chichkov, A. Tunnermann, in Photonics West, Waveguides Produced by Ultra-short Laser Pulses Inside Glasses and Crystals (The International Society for Optical Engineering, San Jose, 2002), pp. 188–196Google Scholar
  8. 8.
    A.H. Nejadmalayeri, P.R. Herman, Ultrafast laser waveguide writing: lithium niobate and the role of circular polarization and picosecond pulse width. Opt. Lett. 31, 2987–2989 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    S. Klein, A. Barsella, H. Leblond, H. Bulou, A. Fort, C. Andraud, G. Lemercier, J.C. Mulatier, K. Dorkenoo, One-step waveguide and optical circuit writing in photopolymerizable materials processed by two-photon absorption. Appl. Phys. Lett. 86, 211118 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    R. Osellame, S. Taccheo, M. Marangoni, R. Ramponi, P. Laporta, D. Polli, S. De Silvestri, G. Cerullo, Femtosecond writing of active optical waveguides with astigmatically shaped beams. J. Opt. Soc. Am. B 20, 1559–1567 (2003)ADSCrossRefGoogle Scholar
  11. 11.
    A.M. Streltsov, N.F. Borrelli, Fabrication and analysis of a directional coupler written in glass by nanojoule femtosecond laser pulses. Opt. Lett. 26, 42–43 (2001)ADSCrossRefGoogle Scholar
  12. 12.
    S.M. Eaton, W. Chen, L. Zhang, H. Zhang, R. Iyer, J.S. Aitchison, P.R. Herman, Telecom-band directional coupler written with femtosecond fiber laser. Photon. Technol. Lett., IEEE 18, 2174–2176 (2006)Google Scholar
  13. 13.
    W. Watanabe, Y. Note, K. Itoh, Fabrication of multimode interference waveguides in glass by use of a femtosecond laser. Opt. Lett. 30, 2888–2890 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    R. Kashyap, Fiber Bragg gratings (Academic, San Diego, 1999))Google Scholar
  15. 15.
    K.O. Hill, Y. Fujii, D.C. Johnson, B.S. Kawasaki, Photosensitivity in optical fiber waveguides – application to reflection filter fabrication. Appl. Phys. Lett. 32, 647–649 (1978)ADSCrossRefGoogle Scholar
  16. 16.
    K.O. Hill, G. Meltz, Fiber Bragg grating technology fundamentals and overview. J. Lightwave Technol. 15, 1263–1276 (1997)ADSCrossRefGoogle Scholar
  17. 17.
    K.O. Hill, B. Malo, F. Bilodeau, D.C. Johnson, J. Albert, Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask. Appl. Phys. Lett. 62, 1035–1037 (1993)ADSCrossRefGoogle Scholar
  18. 18.
    S.J. Mihailov, C.W. Smelser, P. Lu, R.B. Walker, D. Grobnic, H. Ding, G. Henderson, J. Unruh, Fiber Bragg gratings made with a phase mask and 800-nm femtosecond radiation. Opt. Lett. 28, 995–997 (2003)ADSCrossRefGoogle Scholar
  19. 19.
    E. Wikszak, J. Burghoff, M. Will, S. Nolte, A. Tunnermann, T. Gabler, in Conference on Lasers and Electro-Optics (CLEO), vol. 2. Recording of fiber Bragg Gratings with Femtosecond Pulses Using a “point by point” Technique (IEEE, San Francisco, 2004), p. 2Google Scholar
  20. 20.
    A. Martinez, M. Dubov, I. Khrushchev, I. Bennion, Direct writing of fibre Bragg gratings by femtosecond laser. Electron. Lett. 40, 1170–1172 (2004)CrossRefGoogle Scholar
  21. 21.
    M. Kamata, M. Obara, in Conference on Lasers and Electro-Optics Europe (CLEO Europe). Waveguide-based Bragg Filters Inside Bulk Glasses Integrated by Femtosecond Laser Processing (IEEE, Munich, 2005), p. 492Google Scholar
  22. 22.
    G.D. Marshall, M. Ams, M.J. Withford, Direct laser written waveguide-Bragg gratings in bulk fused silica. Opt. Lett. 31, 2690–2691 (2006)ADSCrossRefGoogle Scholar
  23. 23.
    J.H. Chung, Y. Gu, J.G. Fujimoto, in Conference on Lasers and Electro-Optics (CLEO07). Submicron-Period Waveguide Bragg Gratings Direct Written by an 800-nm Femtosecond Oscillator (Baltimore, Maryland, 2007)Google Scholar
  24. 24.
    H. Zhang, S.M. Eaton, P.R. Herman, Low-loss Type II waveguide writing in fused silica with single picosecond laser pulses. Opt. Express 14, 4826–4834 (2006)ADSCrossRefGoogle Scholar
  25. 25.
    E.N. Glezer, M. Milosavljevic, L. Huang, R.J. Finlay, T.H. Her, J.P. Callan, E. Mazur, Three-dimensional optical storage inside transparent materials. Opt. Lett. 21, 2023 (1996)ADSCrossRefGoogle Scholar
  26. 26.
    T. Gorelik, M. Will, S. Nolte, A. Tuennermann, U. Glatzel, Transmission electron microscopy studies of femtosecond laser induced modifications in quartz. Appl. Phys. A 76, 309–311 (2003)ADSCrossRefGoogle Scholar
  27. 27.
    R.R. Thomson, S. Campbell, I.J. Blewett, A.K. Kar, D.T. Reid, Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime. Appl. Phys. Lett. 88, 111109–111101 (2006)ADSCrossRefGoogle Scholar
  28. 28.
    A. Zoubir, C. Lopez, M. Richardson, K. Richardson, Femtosecond laser fabrication of tubular waveguides in poly(methyl methacrylate). Opt. Lett. 29, 1840–1842 (2004)ADSCrossRefGoogle Scholar
  29. 29.
    S. Sowa, W. Watanabe, T. Tamaki, J. Nishii, K. Itoh, Symmetric waveguides in poly(methyl methacrylate) fabricated by femtosecond laser pulses. Opt. Express 14, 291–297 (2006)ADSCrossRefGoogle Scholar
  30. 30.
    S.M. Eaton, H. Zhang, P.R. Herman, Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate. Opt. Express 13, 4708–4716 (2005)ADSCrossRefGoogle Scholar
  31. 31.
  32. 32.
    T. Erdogan, V. Mizrahi, P.J. Lemaire, D. Monroe, Decay of ultraviolet-induced fiber Bragg gratings. J. Appl. Phys. 76, 73–80 (1994)ADSCrossRefGoogle Scholar
  33. 33.
    K.O. Hill, F. Bilodeau, B. Malo, T. Kitagawa, S. Theriault, D.C. Johnson, J. Albert, K. Takiguchi, Chirped in-fiber Bragg gratings for compensation of optical-fiber dispersion. Opt. Lett. 19, 1314–1316 (1994)ADSCrossRefGoogle Scholar
  34. 34.
    F. Bilodeau, D.C. Johnson, S. Theriault, B. Malo, J. Albert, K.O. Hill, All-fiber dense-wavelength-division multiplexer/demultiplexer using photoimprinted Bragg gratings. IEEE Photon. Technol. Lett. 7, 388–390 (1995)ADSCrossRefGoogle Scholar
  35. 35.
    L. Dong, P. Hua, T.A. Birks, L. Reekie, P.S.J. Russell, Novel add/drop filters for wavelength-division-multiplexing optical fiber systems using a Bragg grating assisted mismatched coupler. IEEE Photon. Technol. Lett. 8, 1656–1658 (1996)ADSCrossRefGoogle Scholar
  36. 36.
    A.D. Kersey, A review of recent developments in fiber optic sensor technology. Opt. Fiber Technol.: Mater., Devices Syst. 2, 291–317 (1996)Google Scholar
  37. 37.
    K.C. Byron, K. Sugden, T. Bricheno, I. Bennion, Fabrication of chirped Bragg gratings in photosensitive fiber. Electron. Lett. 29, 1659–1660 (1993)CrossRefGoogle Scholar
  38. 38.
    W.H. Loh, R.I. Laming, X. Gu, M.N. Zervas, M.J. Cole, T. Widdowson, A.D. Ellis, 10 cm chirped fibre Bragg grating for dispersion compensation at 10 Gbit/s over 400 km of non-dispersion shifted fibre. Electron. Lett. 31, 2203–2204 (1995)CrossRefGoogle Scholar
  39. 39.
    A. Boskovic, M.J. Guy, S.V. Chernikov, J.R. Taylor, R. Kashyap, All-fiber diode-pumped, femtosecond chirped pulse amplification system. Electron. Lett. 31, 877–879 (1995)CrossRefGoogle Scholar
  40. 40.
    M.C. Farries, C.M. Ragdale, D.C.J. Reid, Broadband chirped fibre Bragg filters for pump rejection and recycling in erbium doped fibre amplifiers. Electron. Lett. 28, 487–489 (1992)CrossRefGoogle Scholar
  41. 41.
    J. Lauzon, S. Thibault, J. Martin, F. Ouellette, Implementation and characterization of fiber Bragg gratings linearly chirped by a temperature gradient. Opt. Lett. 19, 2027–2029 (1994)ADSCrossRefGoogle Scholar
  42. 42.
    I.C. Byron, H.N. Rourke, Fabrication of chirped fibre gratings by novel stretch and write technique. Electron. Lett. 31, 60–61 (1995)CrossRefGoogle Scholar
  43. 43.
    Y. Painchaud, A. Chandonnet, J. Lauzon, Chirped fibre gratings produced by tilting the fibre. Electron. Lett. 31, 171–172 (1995)CrossRefGoogle Scholar
  44. 44.
    K. Sugden, I. Bennion, A. Molony, N.J. Copner, Chirped gratings produced in photosensitive optical fibres by fibre deformation during exposure. Electron. Lett. 30, 440–442 (1994)CrossRefGoogle Scholar
  45. 45.
    R. Kashyap, P.F. McKee, R.J. Campbell, D.L. Williams, Novel method of producing all fibre photoinduced chirped gratings. Electron. Lett. 30, 996–998 (1994)CrossRefGoogle Scholar
  46. 46.
    I. Bennion, J.A.R. Williams, L. Zhang, K. Sugden, N.J. Doran, UV-written in-fibre Bragg gratings. Opt. Quant. Electron. 28, 93–135 (1996)CrossRefGoogle Scholar
  47. 47.
    W.W. Morey, J.R. Dunphy, G. Meltz, in Distributed and Multiplexed Fiber Optic Sensors, Multiplexing Fiber Bragg Grating Sensors (SPIE, Boston, 1992), pp. 216–224Google Scholar
  48. 48.
    M.G. Xu, L. Reekie, Y.T. Chow, J.P. Dakin, Optical in-fiber grating high-pressure sensor. Electron. Lett. 29, 398–399 (1993)ADSCrossRefGoogle Scholar
  49. 49.
    S. Theriault, K.O. Hill, D.C. Johnson, J. Albert, F. Bilodeau, G. Drouin, A. Beliveau, in 1998 International Conference on Applications of Photonic Technology III: Closing the Gap between Theory, Development, and Applications. High-g Accelerometer Based On In-fiber Bragg Grating: a Novel Detection Scheme (SPIE, Bellingham, 1998), pp. 926–930Google Scholar
  50. 50.
    H. Zhang, S.M. Eaton, P.R. Herman, Single-step writing of Bragg grating waveguides in fused silica with an externally modulated femtosecond fiber laser. Opt. Lett. 32, 2559–2561 (2007)ADSCrossRefGoogle Scholar
  51. 51.
    H. Zhang, S.M. Eaton, J. Li, A.H. Nejadmalayeri, P.R. Herman, Type II high-strength Bragg grating waveguides photowritten with ultrashort laser pulses. Opt. Express 15, 4182–4191 (2007)ADSCrossRefGoogle Scholar
  52. 52.
    H. Zhang, S.M. Eaton, J. Li, P.R. Herman, Femtosecond laser direct-writing of multi-wavelength Bragg grating waveguides in bulk glass. Opt. Lett. 31, 3495–3497 (2006)ADSCrossRefGoogle Scholar
  53. 53.
    A. Othonos, Fiber Bragg gratings. Rev. Sci. Instrum. 68, 4309 (1997)ADSCrossRefGoogle Scholar
  54. 54.
    W.W. Morey, G. Meltz, W.H. Glenn, in Optical Fiber Sensors. Proceedings of the 6th International Conference. OFS ’89. Bragg-grating temperature and strain sensors (Springer, Paris, 1989), pp. 526–531Google Scholar
  55. 55.
    N.F. Borrelli, R.A. Miller, Determination of individual strain-optic coefficients of glass by an ultrasonic technique. Appl. Opt. 7, 745 (1968)ADSCrossRefGoogle Scholar
  56. 56.
    G.D. Marshall, P. Dekker, M. Ams, J.A. Piper, M.J. Withford, Directly written monolithic waveguide laser incorporating a distributed feedback waveguide-Bragg grating. Opt. Lett. 33, 956–958 (2008)ADSCrossRefGoogle Scholar
  57. 57.
    M. Ams, P. Dekker, G.D. Marshall, M.J. Withford, Monolithic 100 mW Yb waveguide laser fabricated using the femtosecond-laser direct-write technique. Opt. Lett. 34, 247–249 (2009)ADSCrossRefGoogle Scholar
  58. 58.
    P. Dekker, M. Ams, G.D. Marshall, J.D. Little, M.J. Withford, Annealing dynamics of waveguide Bragg gratings: evidence of femtosecond laser induced colour centres. Opt. Express 18, 3274–3283 (2010)ADSCrossRefGoogle Scholar
  59. 59.
    V. Maselli, J. Grenier, S. Ho, P.R. Herman, Femtosecond laser written optofluidic sensor: Bragg grating waveguide evanescent probing of microfluidic channel. Opt. Express 17, 11719–11729 (2009)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Electrical and Computer Engineering and Institute for Optical ScienceUniversity of TorontoTorontoCanada

Personalised recommendations