Skip to main content

Spectroscopic Characterization of Waveguides

  • Chapter
  • First Online:

Part of the book series: Topics in Applied Physics ((TAP,volume 123))

Abstract

Since the first experiments on femtosecond laser waveguide writing the question on which mechanisms are responsible for the refractive index change immediately arose. Several efforts have been made in that direction but no conclusive answer has been achieved yet. In fact, it has been observed that several factors determine the actual mechanism dominating the refractive index change, such as the irradiation conditions and the material composition. Understanding the materials change at the microscopic level is however important in terms of optimization of both the fs-laser processing conditions and the material composition. It also can provide more detailed insight into the physical mechanisms involved in the fs-laser modification process to enhance its capabilities. Confocal fluorescence and Raman spectroscopy are powerful tools to investigate the material structure. This chapter will review the results obtained by using these techniques to characterize fs-laser induced structural changes in glass. The focus will be on structures related to waveguides and refractive index changes, since this has been the most active research area of fs-laser processing in glass to date.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. G. Pacchioni, L. Skuja, D.L. Griscom (eds.), Defects inSiO 2 and Related Dielectrics: Science and Technology, NATO Science Series, Kluwer, Dordrecht, 2000)

    Google Scholar 

  2. L. Skuja, in Defects inSiO 2 and Related Dielectrics: Science and Technology, NATO Science Series II, vol. 2, ed. by G. Pacchioni, L. Skuja, D.L. Griscom. Optical Properties of Defects in Silica (Kluwer, Dordrecht, 2000), pp. 73–116

    Google Scholar 

  3. L. Skuja, T. Suzuki, K. Tanimura, Site-selective laser-spectroscopy studies of the intrinsic 1.9-eV luminescence center in glassy SiO2. Phys. Rev. B: Condens. Matter 52(21), 15208–15216 (1995)

    Article  ADS  Google Scholar 

  4. L. Skuja, The origin of the intrinsic 1.9 eV luminescence band in glassy SiO2. J. Non-Cryst. Solids 179, 51–69 (1994)

    Article  ADS  Google Scholar 

  5. L. Skuja, K. Tanimura, N. Itoh, Correlation between the radiation-induced intrinsic 4.8 eV optical absorption and 1.9 eV photoluminescence bands in glassy SiO2. J. Appl. Phys. 80(6), 3518–3525 (1996)

    Article  ADS  Google Scholar 

  6. M. Cannas, M. Leone, Photoluminescence at 1.9 eV in synthetic wet silica. J. Non-Cryst. Solids 280(1–3), 183–187 (2001)

    Article  ADS  Google Scholar 

  7. L. Skuja, M. Mizuguchi, H. Hosono, H. Kawazoe, The nature of the 4.8 eV optical absorption band induced by vacuum-ultraviolet irradiation of glassy SiO2. Nucl. Instrum. Meth. Phys. Res., Sect. B 166, 711–715 (2000)

    Google Scholar 

  8. K. Awazu, H. Kawazoe, O2 molecules dissolved in synthetic silica glasses and their photochemical reactions induced by arf excimer laser radiation. J. Appl. Phys. 68(7), 3584–3591 (1990)

    Article  ADS  Google Scholar 

  9. L. Skuja, M. Hirano, H. Hosono, Oxygen-related intrinsic defects in glassy SiO2: interstitial ozone molecules. Phys. Rev. Lett. 84(2), 302–305 (2000)

    Article  ADS  Google Scholar 

  10. M. Watanabe, S. Juodkazis, H.B. Sun, S. Matsuo, H. Misawa, Luminescence and defect formation by visible and near-infrared irradiation of vitreous silica. Phys. Rev. B 60(14), 9959–9964 (1999)

    Article  ADS  Google Scholar 

  11. S. Juodkazis, M. Watanabe, H.B. Sun, S. Matsuo, J. Nishii, H. Misawa, Optically induced defects in vitreous silica. Appl. Surf. Sci. 154, 696–700 (2000)

    Article  ADS  Google Scholar 

  12. H.B. Sun, S. Juodkazis, M. Watanabe, S. Matsuo, H. Misawa, J. Nishii, Generation and recombination of defects in vitreous silica induced by irradiation with a near-infrared femtosecond laser. J. Phys. Chem. B 104(15), 3450–3455 (2000)

    Article  Google Scholar 

  13. M. Watanabe, S. Juodkazis, H.B. Sun, S. Matsuo, H. Misawa, M. Miwa, R. Kaneko, Transmission and photoluminescence images of three-dimensional memory in vitreous silica. Appl. Phys. Lett. 74(26), 3957–3959 (1999)

    Article  ADS  Google Scholar 

  14. D.L. Griscom, E.J. Friebele, K.J. Long, J.W. Fleming, Fundamental defect centers in glass – electron-spin resonance and optical absorption studies of irradiated phosphorus-doped silica glass and optical fibers. J. Appl. Phys. 54(7), 3743–3762 (1983)

    Article  ADS  Google Scholar 

  15. D. Ehrt, P. Ebeling, U. Natura, UV transmission and radiation-induced defects in phosphate and fluoride-phosphate glasses. J. Non-Cryst. Solids 263(1–4), 240–250 (2000)

    Article  ADS  Google Scholar 

  16. U. Natura, D. Ehrt, Modeling of excimer laser radiation induced defect generation in fluoride phosphate glasses. Nucl. Instrum. Meth. Phys. Res., Sect. B 174(1–2), 151–158 (2001)

    Google Scholar 

  17. U. Natura, D. Ehrt, Generation and healing behavior of radiation-induced optical absorption in fluoride phosphate glasses: the dependence on UV radiation sources and temperature. Nucl. Instrum. Meth. Phys. Res., Sect. B 174(1–2), 143–150 (2001)

    Google Scholar 

  18. A. Pasquarello, R. Car, Identification of Raman defect lines as signatures of ring structures in vitreous silica. Phys. Rev. Lett. 80(23), 5145–5147 (1998)

    Article  ADS  Google Scholar 

  19. A.E. Geissberger, F.L. Galeener, Raman studies of vitreous SiO2 versus fictive temperature. Phys. Rev. B 28(6), 3266–3271 (1983)

    Article  ADS  Google Scholar 

  20. J.C. Mikkelsen Jr., F.L. Galeener, Thermal equilibrium of Raman active defects in vitreous silica. J. Non-Cryst. Solids 37(1), 71–84 (1980)

    Article  ADS  Google Scholar 

  21. F.L. Galeener, Raman and ESR studies of the thermal history of amorphous SiO2. J. Non-Cryst. Solids 71(1–3), 373–386 (1985)

    Article  ADS  Google Scholar 

  22. F.L. Galeener, Planar rings in vitreous silica. J. Non-Cryst. Solids 49(1–3), 53–62 (1982)

    Article  ADS  Google Scholar 

  23. R.K. Brow, Review: the structure of simple phosphate glasses. J. Non-Cryst. Solids 263 & 264, 1–28 (2000)

    Google Scholar 

  24. S.H. Morgan, R.H. Magruder III, E. Silberman, Raman spectra of rare-earth phosphate glasses. J. Am. Ceram. Soc. 70, 378–380 (1987)

    Article  Google Scholar 

  25. D. Ilieva, B. Jivov, G. Bogachev, C. Petkov, I. Penkov, Y. Dimitriev, Infrared and Raman spectra of \(\mathrm{G{a}_{2}{O}_{3}}\mbox{ \textendash }\mathrm{{P}_{2}{O}_{5}}\) glasses. J. Non-Cryst. Solids 283, 195–202 (2001)

    Article  ADS  Google Scholar 

  26. J.J. Hudgens, R.K. Brow, D.R. Tallant, S.W. Martin, Raman spectroscopy study of the structure of lithium and sodium ultraphosphate glasses. J. Non-Cryst. Solids 223, 21–31 (1998)

    Article  ADS  Google Scholar 

  27. R. Lebullenger, L.A.O. Nunes, A.C. Hernandes, Properties of glasses from fluoride to phosphate composition. J. Non-Cryst. Solids 284, 55–60 (2001)

    Article  ADS  Google Scholar 

  28. R.H. Webb, Confocal optical microscopy. Rep. Progr. Phys. 59(3), 427–471 (1996)

    Google Scholar 

  29. D.R. Sandison, W.W. Webb, Background rejection and signal-to-noise optimization in confocal and alternative fluorescence microscopes. Appl. Opt. 33(4), 603–615 (1994)

    Article  ADS  Google Scholar 

  30. J.W. Chan, T.R. Huser, S.H. Risbud, D.M. Krol, Structural changes in fused silica after exposure to focused femtosecond laser pulses. Opt. Lett. 26(21), 1726–1728 (2001)

    Article  ADS  Google Scholar 

  31. J.W. Chan, T.R. Huser, S.H. Risbud, D.M. Krol, Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses. Appl. Phys. A 76, 367–372 (2003)

    Article  ADS  Google Scholar 

  32. H. Nishikawa, E. Watanabe, D. Ito, Y. Sakurai, K. Nagasawa, Y. Ohki, Visible photoluminescence from Si clusters in irradiated amorphous SiO2. J. Appl. Phys. 80, 3513–3519 (1996)

    Article  ADS  Google Scholar 

  33. S. Demos, M. Staggs, K. Minoshima, J. Fujimoto, Characterization of laser induced damage sites in optical components. Opt. Express 10, 1444–1450 (2002)

    ADS  Google Scholar 

  34. W.J. Reichman, J.W. Chan, C.W. Smelser, S.J. Mihailov, D.M. Krol, Spectroscopic characterization of different femtosecond laser modification regimes in fused silica. J. Opt. Soc. Am. B 24, 1627 (2007)

    Article  ADS  Google Scholar 

  35. W.J. Reichman, D.M. Krol, C.W. Smelser, S.J. Mihailov, Fluorescence spectroscopy of fiber gratings written with an ultrafast infrared laser and a phase mask 2005 conference on lasers and electro-optics (CLEO). IEEE 2, 1106 (2005)

    Google Scholar 

  36. J.B. Bates, R.W. Hendricks, L.B. Shaffer, J. Chem. Phys. 61, 4163 (1974)

    Article  ADS  Google Scholar 

  37. M. Okuno, B. Reynard, Y. Shimada, Y. Syono, C. Willaine, Phys. Chem. Minerals 26, 304 (1999)

    Article  ADS  Google Scholar 

  38. S.G. Demos, L. Sheehan, M.R. Kozlowski, Proc. SPIE 3933, 316 (2000)

    Article  ADS  Google Scholar 

  39. R. Bruckner, J. Non-Cryst. Solids 5, 123 (1970)

    Article  ADS  Google Scholar 

  40. W.J. Reichman, D.M. Krol, L. Shah, F. Yoshino, A. Arai, S.M. Eaton, P.R. Herman, A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems. J. Appl. Phys. 99, 123112 (2006)

    Article  ADS  Google Scholar 

  41. J.W. Chan, T.R. Huser, S.H. Risbud, J.S. Hayden, D.M. Krol, Waveguide fabrication in phosphate glasses using femtosecond laser pulses. Appl. Phys. Lett. 82, 2371 (2003)

    Article  ADS  Google Scholar 

  42. J.W. Chan, T. Huser, J.S. Hayden, S.H. Risbud, D.M. Krol, Fluorescence spectroscopy of color centers generated in phosphate glasses after exposure to femtosecond laser pulses. J. Am. Ceram. Soc. 85(5), 1037–1040 (2002)

    Article  Google Scholar 

  43. D.M. Krol, J.W. Chan, T.R. Huser, S.H. Risbud, J.S. Hayden, Fs-Laser Fabrication of Photonic Structures in Glass: the Role of Glass Composition. Fifth International Symposium on Laser Precision Microfabrication, vol. 5662, ed. by I. Miyamoto, H. Helvajian, K. Itoh, K.F. Kobayashi, A. Ostendorf, K. Sugioka. Proceedings of SPIE (2004), p. 30

    Google Scholar 

  44. V.R. Bhardwaj, E. Simova, P.B. Corkum, D.M. Rayner, C. Hnatovsky, R.S. Taylor, B. Schreder, M. Kluge, J. Zimmer, Femtosecond laser-induced refractive index modification in multicomponent glasses. J. Appl. Phys. 97, 083102–1 – 083102–9 (2005)

    Google Scholar 

  45. W. Reichman, C.A. Click, D.M. Krol, Femtosecond laser writing of waveguide structures in sodium calcium silicate glasses. Proc. SPIE 5714, 238 (2005)

    Article  ADS  Google Scholar 

  46. M. Ams, G.D. Marshall, P. Dekker, M. Dubov, V.K. Mezentsev, I. Bennion, M.J. Withford, Investigation of ultrafast laser–photonic material interactions: challenges for directly written glass photonics. IEEE J. Sel. Top. Quant. Electron. 14, 1370 (2008)

    Article  Google Scholar 

  47. S. Taccheo, G. Della Valle, R. Osellame, G. Cerullo, N. Chiodo, P. Laporta, O. Suelto, A. Killi, U. Morgner, M. Lederer, D.l. Kopf, Er:Yb-doped waveguide laser fabricated by femtosecond laser pulses. Opt. Lett. 29, 2626–2628 (2004)

    Google Scholar 

  48. R. Osellame, N. Chiodo, G. Della Valle, G. Cerillo, R. Ramponi, P. Laporta, A. Killi, U. Morgner, O. Suelto, Waveguide lasers in the C-band fabricated by laser inscription with a compact femtosecond oscillator. J. Sel. Top. Quant. Electron. 12, 277–285 (2006)

    Article  Google Scholar 

  49. R. Osellame, N. Chiodo, G. Della Valle, S. Taccheo, R. Ramponi, G. Cerullo, A. Killi, U. Morgner, M. Lederer, D.l. Kopf, Optical waveguide writing with a diode-pumped femtosecond oscillator. Opt. Lett. 29, 1900–1902 (2004)

    Google Scholar 

  50. M. Ams, G.D. Marshall, D. Spence, M.J. Withford, Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses. Opt. Express 13, 5676–5681 (2005)

    Article  ADS  Google Scholar 

  51. L.B. Fletcher, J.J. Witcher, W.J. Reichman, J. Bovatsek, A. Arai, D.M. Krol, Structural modifications in Er–Yb doped phosphate glass induced by femtosecond laser waveguide writing. Proc. of SPIE 6881, 688111–1 (2008)

    Article  ADS  Google Scholar 

  52. L.B. Fletcher, J.J. Witcher, W.B. Reichman, A. Arai, J. Bovatsek, D.M. Krol, Changes to the network structure of Er–Yb doped phosphate glass induced by femtosecond laser pulses, submitted for publication

    Google Scholar 

Download references

Acknowledgements

The author would like to thank James Chan, Luke Fletcher, Wilbur Reichman, and Jon Witcher for their contributions to this chapter. The author acknowledges financial support from the National Science Foundation under Grant No. DMR-0801786.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denise M. Krol .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Krol, D.M. (2012). Spectroscopic Characterization of Waveguides. In: Osellame, R., Cerullo, G., Ramponi, R. (eds) Femtosecond Laser Micromachining. Topics in Applied Physics, vol 123. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23366-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23366-1_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23365-4

  • Online ISBN: 978-3-642-23366-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics