Advertisement

Spectroscopic Characterization of Waveguides

  • Denise M. Krol
Chapter
Part of the Topics in Applied Physics book series (TAP, volume 123)

Abstract

Since the first experiments on femtosecond laser waveguide writing the question on which mechanisms are responsible for the refractive index change immediately arose. Several efforts have been made in that direction but no conclusive answer has been achieved yet. In fact, it has been observed that several factors determine the actual mechanism dominating the refractive index change, such as the irradiation conditions and the material composition. Understanding the materials change at the microscopic level is however important in terms of optimization of both the fs-laser processing conditions and the material composition. It also can provide more detailed insight into the physical mechanisms involved in the fs-laser modification process to enhance its capabilities. Confocal fluorescence and Raman spectroscopy are powerful tools to investigate the material structure. This chapter will review the results obtained by using these techniques to characterize fs-laser induced structural changes in glass. The focus will be on structures related to waveguides and refractive index changes, since this has been the most active research area of fs-laser processing in glass to date.

Keywords

Fuse Silica Color Center Phosphate Glass Refractive Index Change Exposed Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The author would like to thank James Chan, Luke Fletcher, Wilbur Reichman, and Jon Witcher for their contributions to this chapter. The author acknowledges financial support from the National Science Foundation under Grant No. DMR-0801786.

References

  1. 1.
    G. Pacchioni, L. Skuja, D.L. Griscom (eds.), Defects inSiO 2 and Related Dielectrics: Science and Technology, NATO Science Series, Kluwer, Dordrecht, 2000)Google Scholar
  2. 2.
    L. Skuja, in Defects inSiO 2 and Related Dielectrics: Science and Technology, NATO Science Series II, vol. 2, ed. by G. Pacchioni, L. Skuja, D.L. Griscom. Optical Properties of Defects in Silica (Kluwer, Dordrecht, 2000), pp. 73–116Google Scholar
  3. 3.
    L. Skuja, T. Suzuki, K. Tanimura, Site-selective laser-spectroscopy studies of the intrinsic 1.9-eV luminescence center in glassy SiO2. Phys. Rev. B: Condens. Matter 52(21), 15208–15216 (1995)ADSCrossRefGoogle Scholar
  4. 4.
    L. Skuja, The origin of the intrinsic 1.9 eV luminescence band in glassy SiO2. J. Non-Cryst. Solids 179, 51–69 (1994)ADSCrossRefGoogle Scholar
  5. 5.
    L. Skuja, K. Tanimura, N. Itoh, Correlation between the radiation-induced intrinsic 4.8 eV optical absorption and 1.9 eV photoluminescence bands in glassy SiO2. J. Appl. Phys. 80(6), 3518–3525 (1996)ADSCrossRefGoogle Scholar
  6. 6.
    M. Cannas, M. Leone, Photoluminescence at 1.9 eV in synthetic wet silica. J. Non-Cryst. Solids 280(1–3), 183–187 (2001)ADSCrossRefGoogle Scholar
  7. 7.
    L. Skuja, M. Mizuguchi, H. Hosono, H. Kawazoe, The nature of the 4.8 eV optical absorption band induced by vacuum-ultraviolet irradiation of glassy SiO2. Nucl. Instrum. Meth. Phys. Res., Sect. B 166, 711–715 (2000)Google Scholar
  8. 8.
    K. Awazu, H. Kawazoe, O2 molecules dissolved in synthetic silica glasses and their photochemical reactions induced by arf excimer laser radiation. J. Appl. Phys. 68(7), 3584–3591 (1990)ADSCrossRefGoogle Scholar
  9. 9.
    L. Skuja, M. Hirano, H. Hosono, Oxygen-related intrinsic defects in glassy SiO2: interstitial ozone molecules. Phys. Rev. Lett. 84(2), 302–305 (2000)ADSCrossRefGoogle Scholar
  10. 10.
    M. Watanabe, S. Juodkazis, H.B. Sun, S. Matsuo, H. Misawa, Luminescence and defect formation by visible and near-infrared irradiation of vitreous silica. Phys. Rev. B 60(14), 9959–9964 (1999)ADSCrossRefGoogle Scholar
  11. 11.
    S. Juodkazis, M. Watanabe, H.B. Sun, S. Matsuo, J. Nishii, H. Misawa, Optically induced defects in vitreous silica. Appl. Surf. Sci. 154, 696–700 (2000)ADSCrossRefGoogle Scholar
  12. 12.
    H.B. Sun, S. Juodkazis, M. Watanabe, S. Matsuo, H. Misawa, J. Nishii, Generation and recombination of defects in vitreous silica induced by irradiation with a near-infrared femtosecond laser. J. Phys. Chem. B 104(15), 3450–3455 (2000)CrossRefGoogle Scholar
  13. 13.
    M. Watanabe, S. Juodkazis, H.B. Sun, S. Matsuo, H. Misawa, M. Miwa, R. Kaneko, Transmission and photoluminescence images of three-dimensional memory in vitreous silica. Appl. Phys. Lett. 74(26), 3957–3959 (1999)ADSCrossRefGoogle Scholar
  14. 14.
    D.L. Griscom, E.J. Friebele, K.J. Long, J.W. Fleming, Fundamental defect centers in glass – electron-spin resonance and optical absorption studies of irradiated phosphorus-doped silica glass and optical fibers. J. Appl. Phys. 54(7), 3743–3762 (1983)ADSCrossRefGoogle Scholar
  15. 15.
    D. Ehrt, P. Ebeling, U. Natura, UV transmission and radiation-induced defects in phosphate and fluoride-phosphate glasses. J. Non-Cryst. Solids 263(1–4), 240–250 (2000)ADSCrossRefGoogle Scholar
  16. 16.
    U. Natura, D. Ehrt, Modeling of excimer laser radiation induced defect generation in fluoride phosphate glasses. Nucl. Instrum. Meth. Phys. Res., Sect. B 174(1–2), 151–158 (2001)Google Scholar
  17. 17.
    U. Natura, D. Ehrt, Generation and healing behavior of radiation-induced optical absorption in fluoride phosphate glasses: the dependence on UV radiation sources and temperature. Nucl. Instrum. Meth. Phys. Res., Sect. B 174(1–2), 143–150 (2001)Google Scholar
  18. 18.
    A. Pasquarello, R. Car, Identification of Raman defect lines as signatures of ring structures in vitreous silica. Phys. Rev. Lett. 80(23), 5145–5147 (1998)ADSCrossRefGoogle Scholar
  19. 19.
    A.E. Geissberger, F.L. Galeener, Raman studies of vitreous SiO2 versus fictive temperature. Phys. Rev. B 28(6), 3266–3271 (1983)ADSCrossRefGoogle Scholar
  20. 20.
    J.C. Mikkelsen Jr., F.L. Galeener, Thermal equilibrium of Raman active defects in vitreous silica. J. Non-Cryst. Solids 37(1), 71–84 (1980)ADSCrossRefGoogle Scholar
  21. 21.
    F.L. Galeener, Raman and ESR studies of the thermal history of amorphous SiO2. J. Non-Cryst. Solids 71(1–3), 373–386 (1985)ADSCrossRefGoogle Scholar
  22. 22.
    F.L. Galeener, Planar rings in vitreous silica. J. Non-Cryst. Solids 49(1–3), 53–62 (1982)ADSCrossRefGoogle Scholar
  23. 23.
    R.K. Brow, Review: the structure of simple phosphate glasses. J. Non-Cryst. Solids 263 & 264, 1–28 (2000)Google Scholar
  24. 24.
    S.H. Morgan, R.H. Magruder III, E. Silberman, Raman spectra of rare-earth phosphate glasses. J. Am. Ceram. Soc. 70, 378–380 (1987)CrossRefGoogle Scholar
  25. 25.
    D. Ilieva, B. Jivov, G. Bogachev, C. Petkov, I. Penkov, Y. Dimitriev, Infrared and Raman spectra of \(\mathrm{G{a}_{2}{O}_{3}}\mbox{ \textendash }\mathrm{{P}_{2}{O}_{5}}\) glasses. J. Non-Cryst. Solids 283, 195–202 (2001)ADSCrossRefGoogle Scholar
  26. 26.
    J.J. Hudgens, R.K. Brow, D.R. Tallant, S.W. Martin, Raman spectroscopy study of the structure of lithium and sodium ultraphosphate glasses. J. Non-Cryst. Solids 223, 21–31 (1998)ADSCrossRefGoogle Scholar
  27. 27.
    R. Lebullenger, L.A.O. Nunes, A.C. Hernandes, Properties of glasses from fluoride to phosphate composition. J. Non-Cryst. Solids 284, 55–60 (2001)ADSCrossRefGoogle Scholar
  28. 28.
    R.H. Webb, Confocal optical microscopy. Rep. Progr. Phys. 59(3), 427–471 (1996)Google Scholar
  29. 29.
    D.R. Sandison, W.W. Webb, Background rejection and signal-to-noise optimization in confocal and alternative fluorescence microscopes. Appl. Opt. 33(4), 603–615 (1994)ADSCrossRefGoogle Scholar
  30. 30.
    J.W. Chan, T.R. Huser, S.H. Risbud, D.M. Krol, Structural changes in fused silica after exposure to focused femtosecond laser pulses. Opt. Lett. 26(21), 1726–1728 (2001)ADSCrossRefGoogle Scholar
  31. 31.
    J.W. Chan, T.R. Huser, S.H. Risbud, D.M. Krol, Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses. Appl. Phys. A 76, 367–372 (2003)ADSCrossRefGoogle Scholar
  32. 32.
    H. Nishikawa, E. Watanabe, D. Ito, Y. Sakurai, K. Nagasawa, Y. Ohki, Visible photoluminescence from Si clusters in irradiated amorphous SiO2. J. Appl. Phys. 80, 3513–3519 (1996)ADSCrossRefGoogle Scholar
  33. 33.
    S. Demos, M. Staggs, K. Minoshima, J. Fujimoto, Characterization of laser induced damage sites in optical components. Opt. Express 10, 1444–1450 (2002)ADSGoogle Scholar
  34. 34.
    W.J. Reichman, J.W. Chan, C.W. Smelser, S.J. Mihailov, D.M. Krol, Spectroscopic characterization of different femtosecond laser modification regimes in fused silica. J. Opt. Soc. Am. B 24, 1627 (2007)ADSCrossRefGoogle Scholar
  35. 35.
    W.J. Reichman, D.M. Krol, C.W. Smelser, S.J. Mihailov, Fluorescence spectroscopy of fiber gratings written with an ultrafast infrared laser and a phase mask 2005 conference on lasers and electro-optics (CLEO). IEEE 2, 1106 (2005)Google Scholar
  36. 36.
    J.B. Bates, R.W. Hendricks, L.B. Shaffer, J. Chem. Phys. 61, 4163 (1974)ADSCrossRefGoogle Scholar
  37. 37.
    M. Okuno, B. Reynard, Y. Shimada, Y. Syono, C. Willaine, Phys. Chem. Minerals 26, 304 (1999)ADSCrossRefGoogle Scholar
  38. 38.
    S.G. Demos, L. Sheehan, M.R. Kozlowski, Proc. SPIE 3933, 316 (2000)ADSCrossRefGoogle Scholar
  39. 39.
    R. Bruckner, J. Non-Cryst. Solids 5, 123 (1970)ADSCrossRefGoogle Scholar
  40. 40.
    W.J. Reichman, D.M. Krol, L. Shah, F. Yoshino, A. Arai, S.M. Eaton, P.R. Herman, A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems. J. Appl. Phys. 99, 123112 (2006)ADSCrossRefGoogle Scholar
  41. 41.
    J.W. Chan, T.R. Huser, S.H. Risbud, J.S. Hayden, D.M. Krol, Waveguide fabrication in phosphate glasses using femtosecond laser pulses. Appl. Phys. Lett. 82, 2371 (2003)ADSCrossRefGoogle Scholar
  42. 42.
    J.W. Chan, T. Huser, J.S. Hayden, S.H. Risbud, D.M. Krol, Fluorescence spectroscopy of color centers generated in phosphate glasses after exposure to femtosecond laser pulses. J. Am. Ceram. Soc. 85(5), 1037–1040 (2002)CrossRefGoogle Scholar
  43. 43.
    D.M. Krol, J.W. Chan, T.R. Huser, S.H. Risbud, J.S. Hayden, Fs-Laser Fabrication of Photonic Structures in Glass: the Role of Glass Composition. Fifth International Symposium on Laser Precision Microfabrication, vol. 5662, ed. by I. Miyamoto, H. Helvajian, K. Itoh, K.F. Kobayashi, A. Ostendorf, K. Sugioka. Proceedings of SPIE (2004), p. 30Google Scholar
  44. 44.
    V.R. Bhardwaj, E. Simova, P.B. Corkum, D.M. Rayner, C. Hnatovsky, R.S. Taylor, B. Schreder, M. Kluge, J. Zimmer, Femtosecond laser-induced refractive index modification in multicomponent glasses. J. Appl. Phys. 97, 083102–1 – 083102–9 (2005)Google Scholar
  45. 45.
    W. Reichman, C.A. Click, D.M. Krol, Femtosecond laser writing of waveguide structures in sodium calcium silicate glasses. Proc. SPIE 5714, 238 (2005)ADSCrossRefGoogle Scholar
  46. 46.
    M. Ams, G.D. Marshall, P. Dekker, M. Dubov, V.K. Mezentsev, I. Bennion, M.J. Withford, Investigation of ultrafast laser–photonic material interactions: challenges for directly written glass photonics. IEEE J. Sel. Top. Quant. Electron. 14, 1370 (2008)CrossRefGoogle Scholar
  47. 47.
    S. Taccheo, G. Della Valle, R. Osellame, G. Cerullo, N. Chiodo, P. Laporta, O. Suelto, A. Killi, U. Morgner, M. Lederer, D.l. Kopf, Er:Yb-doped waveguide laser fabricated by femtosecond laser pulses. Opt. Lett. 29, 2626–2628 (2004)Google Scholar
  48. 48.
    R. Osellame, N. Chiodo, G. Della Valle, G. Cerillo, R. Ramponi, P. Laporta, A. Killi, U. Morgner, O. Suelto, Waveguide lasers in the C-band fabricated by laser inscription with a compact femtosecond oscillator. J. Sel. Top. Quant. Electron. 12, 277–285 (2006)CrossRefGoogle Scholar
  49. 49.
    R. Osellame, N. Chiodo, G. Della Valle, S. Taccheo, R. Ramponi, G. Cerullo, A. Killi, U. Morgner, M. Lederer, D.l. Kopf, Optical waveguide writing with a diode-pumped femtosecond oscillator. Opt. Lett. 29, 1900–1902 (2004)Google Scholar
  50. 50.
    M. Ams, G.D. Marshall, D. Spence, M.J. Withford, Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses. Opt. Express 13, 5676–5681 (2005)ADSCrossRefGoogle Scholar
  51. 51.
    L.B. Fletcher, J.J. Witcher, W.J. Reichman, J. Bovatsek, A. Arai, D.M. Krol, Structural modifications in Er–Yb doped phosphate glass induced by femtosecond laser waveguide writing. Proc. of SPIE 6881, 688111–1 (2008)ADSCrossRefGoogle Scholar
  52. 52.
    L.B. Fletcher, J.J. Witcher, W.B. Reichman, A. Arai, J. Bovatsek, D.M. Krol, Changes to the network structure of Er–Yb doped phosphate glass induced by femtosecond laser pulses, submitted for publicationGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Applied ScienceUniversity of California DavisDavisUSA

Personalised recommendations