Advertisement

Refractive Index Structures in Polymers

  • Patricia J. Scully
  • Alexandra Baum
  • Dun Liu
  • Walter Perrie
Chapter
Part of the Topics in Applied Physics book series (TAP, volume 123)

Abstract

Refractive index structuring of poly(methyl methacrylate) (PMMA) by femtosecond (fs) laser irradiation is discussed, including writing conditions defined by wavelength, pulse duration, and associated photochemistry. The aim is to determine optimal conditions for refractive index modification, Δn without doping for photosensitivity. The work presented here forms a generic methodology for other polymers. Nanostructuring using holographic optics and precise control of beam parameters has versatile application for three-dimensional (3D) photonic devices. Self-focusing and filamentation at various depths below the surface of bulk PMMA are discussed together with parallel processing using a spatial light modulator. Applications of refractive index structures in polymers include microfluidics, lab-on-a-chip, organic optoelectronic devices, and gratings in polymer optical fibres.

Keywords

Laser Fluence Diffraction Efficiency Refractive Index Change Spatial Light Modulator Pure PMMA 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors acknowledge support from the Engineering and Physical Sciences Research Council, the Unilever-Manchester Advanced Measurement Partnership, Vista Optics and Rinck Elektronik, Jena.

References

  1. 1.
    W.J. Tomlinson, I.P. Kaminov, E.A. Chandross, R.L. Fork, W.T. Silf-vast, Photoinduced refractive index increase in poly (methyl methacrylate) and its applications. Appl. Phys. Lett. 16(12), 486–489 (1970)ADSCrossRefGoogle Scholar
  2. 2.
    J.P. Alison, Photodegradation of poly (methyl methacrylate). J. Polym. Sci. Part A: Polym. Chem. 4(5PA1), 1209–1221 (1966)Google Scholar
  3. 3.
    J.M. Moran, I.P. Kaminov, Properties of holographic gratings photoinduced in polymethyl methacrylate. Appl. Opt. 12(8), 1964–1970 (1973)ADSCrossRefGoogle Scholar
  4. 4.
    A. Torikai, M. Ohno, K. Fueki, Photodegradation of poly(methyl methacrylate) by monochromatic light: quantum yield, effect of wavelengths, and light intensity. J. Appl. Polym. Sci. 41(5–6), 1023–1032 (1990)CrossRefGoogle Scholar
  5. 5.
    T. Mitsuoka, A. Torikai, K. Fueki, Wavelength sensitivity of the photodegradation of poly(methyl methacrylate). J. Appl. Polym. Sci. (6), 1027–1032 (1993)CrossRefGoogle Scholar
  6. 6.
    A. Torikai, T. Mitsuoka, Electron spin resonance studies on poly(methyl methacrylate) irradiated with monochromatic light. J. Appl. Polym. Sci. 55(12), 1703–1706 (1995)CrossRefGoogle Scholar
  7. 7.
    G.D. Peng, Z. Xiong, P.L. Chu, Photosensitivity and gratings in dye-doped polymer optical fibers. Opt. Fibre Technol. 5, 242–251, (1999)ADSCrossRefGoogle Scholar
  8. 8.
    Z. Xiong, G.D. Peng, B. Wu, P.L. Chu, Highly tunable bragg gratings in single-mode polymer optical fibers. IEEE Photon. Technol. Lett. 11(3), 352–354 (1999)ADSCrossRefGoogle Scholar
  9. 9.
    J. Marotz, Holographic storage in sensitized poly (methyl methacrylate) blocks. Appl. Phys. B-Photophys. Laser Chem. 37(4), 181–187 (1985)ADSCrossRefGoogle Scholar
  10. 10.
    S. Küper, M. Stuke. Ablation of uv-transparent materials with femtosecond uv excimer laser-pulses. In Laser- and Particle-Beam Chemical Processes on Surfaces, volume 129 of Materials Research Society Conference Proceedings, pages 375–384 (1989)Google Scholar
  11. 11.
    N. Bityurin, S. Muraviov, A. Alexandrov, A. Malyshev, UV laser modifications and etching of polymer films (PMMA) below the ablation threshold. Appl. Surf. Sci. 109–110, 270–274 (1997)CrossRefGoogle Scholar
  12. 12.
    A.K. Baker, P.E. Dyer, Refractive-index modification of poly methyl-methacrylate (pmma) thin films by krf-laser irradiation. Appl. Phys. A-Mater. Sci. Process. 57(6), 543–544 (1993)ADSCrossRefGoogle Scholar
  13. 13.
    C. Wochnowski, M.A.S. Eldin, S. Metev, Uv-laser-assisted degradation of poly(methyl methacrylate). Polym. Degrad. Stabil. 89(2), 252–264, (2005)CrossRefGoogle Scholar
  14. 14.
    C. Wochnowski, S. Metev, G. Sepold, UV-laser-assisted modification of the optical properties of polymethylmethacrylate. Appl. Surf. Sci. 154, 706–711 (2000)ADSCrossRefGoogle Scholar
  15. 15.
    A.A. Miller, E.J. Lawton, J.S. Balwit, Effect of chemical structure of vinyl polymers on crosslinking and degradation by ionizing radiation. J. Polym. Sci. 14(77), 503–504 (1954)ADSCrossRefGoogle Scholar
  16. 16.
    P.J. Scully, R. Bartlett, S. Caulder, P. Eldridge, R. Chandy, J. McTavish, V. Alexiou, I. P. Clarke, M. Towrie, A.W. Parker. UV laser photo-induced refractive index changes in poly methyl methacrylate and plastic optical fibres for application as sensors and devices. 14th International Conference on Optical Fiber Sensors, 4185, 854–857 (2000)Google Scholar
  17. 17.
    P.J. Scully, D. Jones, D.A. Jaroszynski. Writing refractive index gratings in perspex and polymer optical fibre using femtosecond laser irradiation. In Photon 02, Cardiff, 2002. IOPGoogle Scholar
  18. 18.
    P.J. Scully, D. Jones, D.A. Jaroszynski, Femtosecond laser irradiaton of polymethylmethacrylate for refractive index gratings. J. Optics A Pure Appl. Opt. 5, S92–S96 (2003)ADSCrossRefGoogle Scholar
  19. 19.
    A. Baum, P.J. Scully, M. Basanta, C. L. Thomas, P. Fielden, N. Goddard, W. Perrie, P. Chalker, Photochemistry of refractive index structures in poly(methyl methacrylate) by femtosecond laser irradiation. Opt. Lett. 32(2), 190–192 (2007)ADSCrossRefGoogle Scholar
  20. 20.
    N.M. Bityurin, A.I. Korytin, S.V. Muraviov, A.M. Yurkin, Second harmonic of ti:sapphire femtosecond laser as a possible tool for point-like 3D optical information recording. In Laser Applications in Microelectronic and Optoelectronic Manufacturing IV, volume 3618 of Proceedings of SPIE, p. 122–129 (1999)Google Scholar
  21. 21.
    Y. Li, K. Yamada, T. Ishizuka, W. Watanabe, K. Itoh, Z.X. Zhou, Single femtosecond pulse holography using polymethyl methacrylate. Opt. Exp. 10(21), 1173–1178 (2002)ADSGoogle Scholar
  22. 22.
    A. Zoubir, C. Lopez, M. Richardson, K. Richardson, Femtosecond laser fabrication of tubular waveguides in poly(methyl methacrylate). Opt. Lett. 29(16), 1840–1842 (2004)ADSCrossRefGoogle Scholar
  23. 23.
    K. Ohta, M. Kamata, M. Obara, N. Sawanobori, Optical waveguide fabrication in new glasses and pmma with temporally tailored ultrashort laser. In Commercial and Biomedical Applications of Ultrafast Lasers IX, volume 5340 of Proceedings of SPIE, p. 172–178, (2004)Google Scholar
  24. 24.
    C.T. Kauter, B. Koesters, P. Quis, E. Trommsdorff, M. Buck, C.-J. Diem, G. Schreyer, P.R. Szigeti, Herstellung und Eigenschaften von Acrylglaesern Polymethacrylatein Kunststoff-Handbuch volume 4, Hanser Munich (1975)Google Scholar
  25. 25.
    S. Sowa, W. Watanabe, T. Tamaki, J. Nishi, K. Itoh. Symmetric waveguides in poly(methyl methacrylate) fabricated by femtosecond laser pulses. Opt. Exp. 14(1), 291–297 (2006)ADSCrossRefGoogle Scholar
  26. 26.
    C. Wochnowski, Y. Cheng, K. Meteva, K. Sugioka, K. Midorikawa, S. Metev, Femtosecond-laser induced formation of grating structures in planar polymer substrates. J. Opt. A-Pure Appl. Opt. 7(9), 493–501 (2005)ADSCrossRefGoogle Scholar
  27. 27.
    F. Korte, S. Adams, A. Egbert, C. Fallnich, A. Ostendorf, Sub-diffraction limited structuring of solid targets with femtosecond laser pulses. Opt. Exp. 7(2), 41–49 (2000)ADSCrossRefGoogle Scholar
  28. 28.
    J.W. Chan, T.R. Huser, S.H. Risbud, J.S. Hayden, D. M. Krol, Waveguide fabrication in phosphate glasses using femtosecond laser pulses. Appl. Phys. Lett. 82(15), 2371–2373 (2003)ADSCrossRefGoogle Scholar
  29. 29.
    M. Douay, W. X. Xie, T. Taunay, P. Bernage, P. Niay, P. Cordier, B. Poumellec, L. Dong, J. F. Bayon, H. Poignant, E. Delevaque, Densification involved in the UV-based photosensitivity of silica glasses and optical fibers. J. Lightwave Technol. 15(8), 1329–1342 (1997)ADSCrossRefGoogle Scholar
  30. 30.
    D.M. Krol, J.W. Chan, T.R. Huser, S.H. Risbud, J.S. Hayden Fs-laser fabrication of photonic structures in glass: The role of glass composition. Proc. SPIE 5662, 30–39 (2004)Google Scholar
  31. 31.
    W.J. Reichman, D.M. Krol, L. Shah, F. Yoshino, A. Araj, S.M. Eaton, P.R. Herman, A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems. J. Appl. Phys. 99(12), (2006)Google Scholar
  32. 32.
    T.K. Gaylord, M.G. Moharam, Analysis and applications of optical diffraction by gratings. Proc. IEEE 73, 894–937 (1985)CrossRefGoogle Scholar
  33. 33.
    S. Baudach, J. Bonse, J. Krueger, W. Kautek, Ultrashort pulse laser ablation of polycarbonate and polymethylmethacrylate. Appl. Surf. Sci. 154–155, 555–560 (2000)CrossRefGoogle Scholar
  34. 34.
    J. Krueger, S. Martin, H. Maedebach, L. Urech, T. Lippert, A. Wokaun, W. Kautek, Femto- and nanosecond laser treatment of doped polymethylmethacrylate. Appl. Surf. Sci. 247, 406–411 (2005)ADSCrossRefGoogle Scholar
  35. 35.
    J. Ihlemann, F. Beinhorn, H. Schmidt, K. Luther, J. Troe, Plasma and plume effects on UV laser ablation of polymers. Proc. SPIE, 5448, 572–580 (2004)ADSCrossRefGoogle Scholar
  36. 36.
    W. Kautek, J. Krüger, M. Lenzner, S. Sartania, C. Spielmann, F. Krausz, Appl. Phys. Lett. 69, 3146 (1996)ADSCrossRefGoogle Scholar
  37. 37.
    H.C. Guo, H.B. Jiang, Y. Fang, C. Peng, H. Yang, Y. Li, Q.H. Gong, J. Opt. A 6, 787 (2004)ADSCrossRefGoogle Scholar
  38. 38.
    A. Baum, P.J. Scully, W. Perrie, D. Jones, R. Issac, D.A. Jaroszynski, Pulse-duration dependency of femtosecond laser refractive index modification in poly(methyl methacrylate). Opt. Lett. 33, 651–653 (2008)ADSCrossRefGoogle Scholar
  39. 39.
    D.N. Nikogosyan Multi-photon high-excitation-energy approach to fibre grating inscription. Meas. Sci. Technol. 18, R1–R29 (2007)Google Scholar
  40. 40.
    C. Wochnowski, Y. Hanada, Y. Cheng, S. Metev, F. Vollertsen, K. Sugioka, K. Midorikawa, Femtosecond-laser-assisted wet chemical etching of polymer materials. J. Appl. Polym. Sci. 100, 1229–1238 (2006)CrossRefGoogle Scholar
  41. 41.
    C. Schaffer, A. Brodeur, E. Mazur, Meas. Sci. Technol. 12, 1784 (2001)ADSCrossRefGoogle Scholar
  42. 42.
    J. Liggat, in Polymer Handbook, 4th edn., ed. by J. Brandrup, E.H. Immergut, E.A. Grulke, A. Abe, D.R. Bloch, (Wiley, 2005), II/456Google Scholar
  43. 43.
    M.A. Wochnowski, S. Eldin, S. Metev, UV-laser-assisted degradation of poly (methylmethacylate). Polym. Degrad. Stab. 88, 2975–2978 (2005)Google Scholar
  44. 44.
    G.B. Blanchet, P. Cotts, C.R. Fincher, Incubation: Subthreshold ablation of poly-(methyl methacrylate) and nature of the decomposition pathways. J. Appl. Phys. 88, 2975–2978 (2000)ADSCrossRefGoogle Scholar
  45. 45.
    E. Süske, T. Scharf, H.-U. Krebs, E. Panchenko, T. Junkers, M. Egorov, M. Buback, H. Kijewski, Tuning of cross-linking and mechanical properties of laser-deposited poly(methyl methacrylate) films. J. Appl. Phys. 97(063501), 1–4 (2005)Google Scholar
  46. 46.
    T.G. Fox, S. Loshaek, Influence of molecular weight and degree of crosslinking on the specific volume and glass temperature of polymers. J. Polym. Sci. XV, 371–390 (1955)Google Scholar
  47. 47.
    S. Küper, S. Modaressi, M. Stuke, J. Phys. Chem. 94, 7514 (1990)CrossRefGoogle Scholar
  48. 48.
    A. Zoubir, M. Richardson, L. Canioni, A. Brocas, L. Sarger, Optical properties of infrared femtosecond laser-modified fused silica and application to waveguide fabrication. J. Opt. Soc. Am. B 22(10), 2138–2143 (2005)ADSCrossRefGoogle Scholar
  49. 49.
    I. Zailer, J.E.F. Frost, V. Chabasseur-Molneux, C. J.B. Ford, M. Pepper, Crosslinked PMMA as a high-resolution negative resist for electron beam lithography and applications for physics of low-dimensional structures. Semicond. Sci. Technol. 11, 1235–1238 (1996)ADSCrossRefGoogle Scholar
  50. 50.
    V. Lucarini, J.J. Saarinen, K.E. Peiponen, E.M. Vartiainen, Kramers-Kronig relations in Optical Materials Research (Springer, Berlin, 2005)Google Scholar
  51. 51.
    S. Tzortzakis, L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, A. Courain, L. Berge, Self-guided propagation of ultrafast IR laser pulses in fused silica. Phys. Rev. Lett. 87(21) (2001)Google Scholar
  52. 52.
    Z. Wu, H. Jiang, L. Luo, H. Guo, H. Yang, Q. Gong, Multiple foci and a long filament observed with focused femtosecond pulse propagation in fused silica. Opt. Lett. 27(6) (2002)Google Scholar
  53. 53.
    I.M. Burakov, N.M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, I.V. Hertel, Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses. J. Appl. Phys. 101, 043506 (2007)ADSCrossRefGoogle Scholar
  54. 54.
    A. Saliminia, N.T. Nguyen, S.L. Chin, R. Vallee, The influence of self-focusing and filamentation on refractive index modifications in fused silica using intense femtosecond pulses. Opt. Comm. 241, 529–583 (2004)ADSCrossRefGoogle Scholar
  55. 55.
    N. Uppal, P.S. Shiakolas, M. Rizwan, Three dimensional waveguide fabrication in PMMA using femtosecond laser micromachining system. Micromachining Microfabrication Process Technology X111. Proc. SPIE 6882, 68820I (2008)Google Scholar
  56. 56.
    M. Miwa, S. Juodkazis, S. Matsuo, H. Misawa, Femtosecond two-photon stereo-lithography. Appl. Phys. A 73, 561–566 (2001)Google Scholar
  57. 57.
    W. Watanabe, Femtosecond filamentary modifications in bulk polymer materials. Laser Phys. 19(2), 342–345 (2009)ADSCrossRefGoogle Scholar
  58. 58.
    C. Hnatkovsky, R.S. Taylor, E. Semova, V.R. Bhardwaj, D.M. Raynor, P.B. Corkum, High-resolution study of photoinduced modification in fused silica produced by tightly focused femtosecond laser beam in the presence of aberrations. J. Appl. Phys. 98, 01357 (2005)Google Scholar
  59. 59.
    D. Liu, Y. Li, R. An, Y. Dou, H. Yang, Q. Gong, Influence of focusing depth on the microfabrication of waveguides inside silica glass by femtosecond laser direct writing. Appl. Phys. A 84, 257–260 (2006)ADSCrossRefGoogle Scholar
  60. 60.
    Z. Kuang, D. Liu, W. Perrie, S. Edwardson, M. Sharp, E. Fearon, G. Dearden, K. Watkins, High throughput diffractive multi-beam femtoseond laser processing using a spatial light modulator. Appl. Surf. Sci. 255, 2284–2289 (2008)ADSCrossRefGoogle Scholar
  61. 61.
    Z. Kuang, D. Liu, W. Perrie, S. Edwardson, M.C. Sharp, E. Fearon, G. Dearden, K.G. Watkins, Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring. Appl. Surf. Sci. 255(13–14), 6582–6588 (2009)ADSCrossRefGoogle Scholar
  62. 62.
    D. Liu, Z. Kuang, W. Perrie, P.J. Scully, A. Baum, S.P. Edwardson, E. Fearon, G. Dearden, K.G. Watkins, High-speed uniform parallel 3D refractive index micro-structuring of poly(methyl methacrylate) for volume phase gratings. Appl. Phys. B: Lasers Optic 101(4), 817–823 (2010)ADSCrossRefGoogle Scholar
  63. 63.
    H. Kogelnik, Coupled wave theory for thick hologram gratings. Bell Syst. Tech. J. 48, 2909 (1969)Google Scholar
  64. 64.
    C. Mauclair, G. Cheng, N. Huot, E. Audouard, A. Rosenfeld, I.V. Hertel, R. Stoian, Dynamic ultrafast laser spatial tailoring for parallel micro-machining of photonic devices in transparent materials. Optics Exp. 17(3531) (2009)Google Scholar
  65. 65.
    Y. Chen, L. Zhang, G. Chen, Fabrication, modification, and application of poly(methyl methacrylate) microfluidic chips. Electrophoresis 29, 1801–1814 (2008)CrossRefGoogle Scholar
  66. 66.
    M. Silva-Lopez, Fender, A., MacPherson, W.N., Barton, J.S., Jones, J.D.C., Zhao, D., Dobb, H., Webb, D.J., Zhang, L., Bennion, I., Strain and temperature sensitivity of a single-mode polymer optical fiber, Opt. Lett. 30, 3129–3131 (2005)Google Scholar
  67. 67.
    K. Kalli, H.L. Dobb, D.J. Webb, K. Carroll, M. Komodromos, C. Themistos, G.D. Peng, Q. Fang, I.W. Boyd, Electrically tunable Bragg gratings in single-mode polymer optical fiber. Opt. Lett. 32, 214–216 (2007)ADSCrossRefGoogle Scholar
  68. 68.
    H. Dobb, K. Carroll, D.J. Webb, K. Kalli, M. Komodromos, C. Themistos, G.D. Peng, A. Argyros, M.C.J. Large, M.A. van Eijkelenborg, Q. Fang, I.W. Boyd, Grating based devices in polymer optical fibre. Opt. Sens. II 6189, 18901–18901 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Patricia J. Scully
    • 1
    • 2
  • Alexandra Baum
    • 1
    • 2
  • Dun Liu
    • 3
  • Walter Perrie
    • 3
  1. 1.Photon Science Institute, Alan Turing BuildingThe University of ManchesterManchesterUK
  2. 2.Centre for Instrumentation and Analytical ScienceThe University of Manchester, CEASManchesterUK
  3. 3.University of Liverpool, Liverpool Lairdside Laser Engineering Centre (LLEC)WirralUK

Personalised recommendations