Waveguides in Crystalline Materials

  • Matthias Heinrich
  • Katja Rademaker
  • Stefan Nolte
Part of the Topics in Applied Physics book series (TAP, volume 123)


Crystalline media offer a variety of unique properties, such as even order nonlinearities, birefringence, and broad transparency ranges, which make them of great interest for applications in integrated optics. However, the extension of femtosecond laser direct inscription techniques [Nolte et al., Appl. Phys. A 77, 109 (2003), J. Mod. Opt. 51, 2533 (2004); Itoh et al. MRS Bull. 31, 620 (2006); Gattass, Mazur, Nature 2, 219–225 (2008); Della Valle et al., J. Opt. A: Pure Appl. Opt. 11 (2009)] with their vast potential for the fabrication of buried three-dimensional structures of arbitrary shapes to crystals has proven to be a challenging task. Results achieved so far in direct writing of optical devices in crystals will be reviewed.


Femtosecond Laser Lithium Niobate Yttrium Aluminum Garnet Waveguide Laser Lithium Tantalate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    J.W. Chan, T. Huser, S. Risbud, D.M. Krol, “Structural changes in fused silica after exposure to focused femtosecond laser pulses”, Opt. Lett. 26, 1726 (2001)ADSCrossRefGoogle Scholar
  2. 2.
    J.W. Chan, T. Huser, S. Risbud, D.M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses”, Appl. Phys. A 76, 367 (2003)ADSCrossRefGoogle Scholar
  3. 3.
    J.W. Chan, T. Huser, S. Risbud, J.S. Hayden, D.M. Krol, “Waveguide fabrication in phosphate glasses using femtosecond laser pulses”, Appl. Phys. Lett. 82, 2371 (2003)ADSCrossRefGoogle Scholar
  4. 4.
    T. Gorelik, M. Will, J. Burghoff, A. Tünnermann, “Transmission electron microscopy studies of femtosecond laser induced modifications in quartz”, Appl. Phys. A: Mater. Sci. process., 76, 309 (2003)ADSCrossRefGoogle Scholar
  5. 5.
    J. Burghoff, “Volumenwellenleiter in kristallinen Medien”, Dissertation, Institut für Angewandte Physik, Friedrich-Schiller-Universität Jena, Jena (2007) Braunschweig Verlag; 1.Auflage: 1 (August 2007), ISBN 3981166515Google Scholar
  6. 6.
    J. Burghoff, H. Hartung, S. Nolte, A. Tünnermann, “Structural properties of femtosecond laser-induced modifications in LiNbO3”, Appl. Phys. A 86, 165 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    A. Nejadmalayeri, P. Herman, “Ultrafast laser waveguide writing: lithium niobate and the role of circular polarization and picosecond pulse width,” Opt. Lett. 31, 2987 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    L. Gui, B. Xu, T.C. Chong, “Microstructure in Lithium Niobate by Use of Focused Femtosecond Laser Pulses” IEEE Photonics Technol. Lett. 16, 1337 (2004)Google Scholar
  9. 9.
    R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H.T. Bookey, R.R. Thomson, N.D. Psaila, A.K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient”, Appl. Phys. Lett. 90, 241107 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    J. Burghoff, C. Grebing, S. Nolte, A. Tünnermann, “Waveguides in lithium niobate fabricated by focused ultrashort laser pulses”, Appl. Surf. Sci. 253, 7899 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    J. Thomas, J. Burghoff, M. Heinrich, S. Nolte, A. Ancona, A. Tünnermann, “Femtosecond laser-written quasi-phase-matched waveguides in lithium niobate”, Appl. Phys. Lett. 91, 151108 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    A. Nejadmalayeri, P. Herman, J. Burghoff, M. Will, S. Nolte, A. Tünnermann, “Inscription of optical waveguides in crystalline silicon by mid-infrared femtosecond laser pulses”, Opt. Lett. 30, 964 (2005)ADSCrossRefGoogle Scholar
  13. 13.
    Y. Li, P. Lu, N. Dai, et al. Surface relief diffraction gratings written on beta − BaB2O4 crystal by femtosecond pulses, Appl. Phys. B-Lasers Opt. 88(2), 227–230 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    F. Dreisow, J. Thomas, J. Burghoff, A. Ancona, M. Heinrich, S. Nolte, A. Tuennermann, “Efficient frequency doubling in fs-laser written waveguides in PPLN and BBO,” SPIE Photonics West/LASE 2008, paper 6879A-34Google Scholar
  15. 15.
    B. McMillen, K.P. Chen, H. An, S. Fleming, Vincent Hartwell, and David Snoke, “Waveguiding and nonlinear optical properties of three-dimensional waveguides in LiTaO3 written by high-repetition rate ultrafast laser,” Appl. Phys. Lett. 93, 111106 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    B. McMillen, K.P. Chen, D. Jaque, “Microstructural imaging of high repetition rate ultrafast laser written LiTaO3 waveguides,” Appl. Phys. Lett. 94, 081106 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    K.-I. Kawamura, M. Hirano, T. Kamiya, H. Hosono, Femtosecond-laser-encoded distributed-feedback color center laser in lithium fluoride single crystal, J. Non-Cryst. Solids 352, 2347–2350 (2006)ADSCrossRefGoogle Scholar
  18. 18.
    A. Ródenas, J.A. Sanz García, D. Jaque, G.A. Torchia, C. Mendez, I. Arias, L. Roso, F. Agulló-Rueda, “Optical investigation of femtosecond laser induced microstress in neodymium doped lithium niobate crystals”, J. Appl. Phys. 100, 033521 (2006)ADSCrossRefGoogle Scholar
  19. 19.
    M.V. Dubov, L. Krushchev, I. Bennion, A.G. Okhrimchuk, A.V. Shectakov, “Waveguide inscription in YAG:Cr4 +  crystals by femtosecond laser irradiation, paper CWA49, CLEO (2004)Google Scholar
  20. 20.
    A.G. Okhrimchuk, A.V. Shestakov, I. Khrushchev, J. Mitchell, “Depressed cladding, buried waveguide laser formed in a YAG:Nd3 +  crystal by femtosecond laser writing,” Opt. Lett. 30, 2248 (2005)ADSCrossRefGoogle Scholar
  21. 21.
    J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, A. Tünnermann, Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser, Special Issue Appl. Phys. B (2009)Google Scholar
  22. 22.
    J. Siebenmorgen, K. Rademaker, S. Nolte, G. Huber, Femtosecond laser written stress-induced Nd:YAG channel waveguide laser, THoD.7, Europhoton, Paris (2008)Google Scholar
  23. 23.
    J. Siebenmorgen, T. Calmano, K. Petermann, G. Huber, “Fabrication of a stress-induced Nd:YAG channel waveguide laser using fs-Laser pulses”, Advanced Solid-State Photonics, MB29, Denver, USA (2009)Google Scholar
  24. 24.
    G.A. Torchia, A. Rodenas, A. Benayas, E. Canelar, L. Roso, D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminium garnet ceramic waveguides”, Appl. Phys. Lett. 92, 111103 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    A. Rodénas, G.A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations”, Appl. Phys. B 95(1), 85–96 (2009)ADSCrossRefGoogle Scholar
  26. 26.
    G.A. Torchia, P.F. Mailán, A. Rodenas, D. Jaque, C. Mendez, L. Roso, “Femtosecond laser written surface waveguides fabricated in Nd:YAG ceramics”, Opt. Exp. 15, 13266–13271 (2007)ADSCrossRefGoogle Scholar
  27. 27.
    V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R.P. Salathé, M. Pollnau, R. Osellame, G. Cerullo, P. Laporta, “Femtosecond-irradiation-induced refractive-index changes and channel waveguiding in bulk Ti3+:Sapphire,” Appl. Phys. Lett. 85, 1122 (2004)ADSCrossRefGoogle Scholar
  28. 28.
    C.N. Borca, V. Apostolopoulos, F. Gardillou, H.G. Limberger, M. Pollnau, R.-P. Salathé, “Buried channel waveguides in Yb-doped KY(WO4)2 crystals”, Appl. Surf. Sci. 253, 8300–8303 (2007)ADSCrossRefGoogle Scholar
  29. 29.
    J. Burghoff, C. Grebing, S. Nolte, A. Tünnermann, “Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate”, Appl. Phys. Lett. 89, 081108 (2006)ADSCrossRefGoogle Scholar
  30. 30.
    G.L. Destefanis, J.P. Gailliard, E.L. Ligeon, S. Valette, B.W. Farmery, P.D. Townsend, A. Perez, The formation of waveguides and modulators in LiNbO3 by ion implantation, J. Appl. Phys. 50(12), 7898–7905 (1979)ADSCrossRefGoogle Scholar
  31. 31.
    J.L. Jackel, C.E. Rice, J.J. Veselka: Proton-Exchange for high-index waveguides in LiNbO3, Appl. Phys. Lett. 41(7), 607–608 (1982)ADSCrossRefGoogle Scholar
  32. 32.
    C. Méndez, G.A. Torchia, D. Delgado, I. Arias, L. Roso, “Fabrication and characterization of Mach-Zehnder devices in LiNbO3 written with femtosecond pulses”, Proc. Of IEEE/LEOS workshop on fibers and optical passive components, pp. 131 (2005)Google Scholar
  33. 33.
    Y. Liao, J. Xu, Y. Cheng, Z. Zhou, F. He, H. Sun, J. Song, X. Wang, Z. Xu, K. Sugioka, K. Midorikawa, “Electrooptic integration of embedded electrodes and waveguides in LiNbO3 using a femtosecond laser”, Opt. Lett. 33(19), 2281 (2008)Google Scholar
  34. 34.
    S. Ringleb, K. Rademaker, S. Nolte, A. Tünnermann, “Optical waveguide devices and electrooptic modulation in ultrashort-pulse laser written lithium niobate crystals” (DPG Tagung, Hamburg, 2009)Google Scholar
  35. 35.
    Y. Sikorski, A.A. Said, P. Bado, R. Maynard, C. Florea, K.A. Winick, Electron. Lett. 36, 226 (2000)CrossRefGoogle Scholar
  36. 36.
    S. Taccheo, G. Della Valle, R. Osellame, G. Cerullo, N. Chiodo, P. Laporta, O. Svelto, A. Killi, U. Morgner, M. Lederer, D. Kopf, “Er:Yb-doped waveguide laser fabricated by femtosecond laser pulses,” Opt. Lett. 29, 2626 (2004)ADSCrossRefGoogle Scholar
  37. 37.
    L. Laversenne, P. Hoffmann, M. Pollnau, P. Moretti, J. Mugnier, Designable buried waveguides in sapphire by proton implantation, Appl. Phys. Lett. 85, 22, 5167–5169 (2004)ADSCrossRefGoogle Scholar
  38. 38.
    C. Grivas, D.P. Sheperd, R.W. Eason, L. Laversenne, P. Moretti, C.N. Borca, M. Pollnau, “Room-temperature continuos-wave operation of Ti:sapphire buried channel-waveguide lasers fabricated via proton implantation”, Opt. Lett. 31(23), 3450–3452 (2006)ADSCrossRefGoogle Scholar
  39. 39.
    Y.E. Romanyuk, C.N. Borca, M. Pollnau, S. Rivier, V. Petrov, U. Griebner, “Yb-doped KY(WO4)2 planar waveguide laser”, Opt. Lett. 31(1), 53–55 (2006)ADSCrossRefGoogle Scholar
  40. 40.
    F. Gardillou, Y.E. Romanyuk, C.N. Borca, R.-P. Salathé, M. Pollnau, “Lu, Gd codoped KY(WO4)2:Yb epitaxial layers: towards integrated optics based on KY(WO4)2”, Opt. Lett. 32(5), 488–490 (2007)ADSCrossRefGoogle Scholar
  41. 41.
    J. Siebenmorgen, T. Calmano, O. Hellmig, K. Petermann, G. Huber, “Efficient Femtosecond Laser Written Nd:YAG Channel Waveguide Laser with an Output Power of more than 1 W”, CLEO Europe Conference, paper CJ7.1 (2009)Google Scholar
  42. 42.
    M. Heinrich, A. Szameit, F. Dreisow, S. Döring, J. Thomas, A. Ancona, S. Nolte, A. Tünnermann, “Evanescent coupling in arrays of type II femtosecond laser-written waveguides in bulk x-cut lithium niobate,” Appl. Phys. Lett. 93, 101111 (2008)ADSCrossRefGoogle Scholar
  43. 43.
    R.R. Gattass, E. Mazur, “Femtosecond laser micromachining in transparent materials”, Nature 2, 219–225 (2008)Google Scholar
  44. 44.
    K. Itoh, W. Watanabe, S. Nolte, C.B. Schaffer, “Ultrafast Processes for Bulk Modification of Transparent Materials”, MRS Bull. 31, 620 (2006)CrossRefGoogle Scholar
  45. 45.
    S. Nolte, M. Will, J. Burghoff, A. Tünnermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics”, Appl. Phys. A 77, 109 (2003)ADSCrossRefGoogle Scholar
  46. 46.
    S. Nolte, M. Will, J. Burghoff, A. Tünnermann, “Ultrafast laser processing: New options for 3D photonic structures”, J. Mod. Opt. 51, 2533 (2004)ADSCrossRefGoogle Scholar
  47. 47.
    A. Ródenas, G. Zhou, D. Jaque, M. Gu, “Direct laser writing of three-dimensional photonic structures in Nd:yttrium aluminium garnet laser ceramics”, Appl. Phys. Lett. 93, 151104 (2008)ADSCrossRefGoogle Scholar
  48. 48.
    R.R. Thomson, S. Campbell, I.J. Blewett, A.K. Kar, D.T. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett. 88, 111109 (2006)ADSCrossRefGoogle Scholar
  49. 49.
    G.A. Torchia, C. Mendez, I. Arias, L. Roso, A. Rodenas, D. Jaque, “Laser gain in femtosecond microstructured Nd:MgO:LiNbO3 crystals”, Appl. Phys. B 83, 559 (2006)ADSCrossRefGoogle Scholar
  50. 50.
    G. Della Valle, R. Osellame, P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses”, J. Opt. A Pure Appl. Opt. 11, (2009) – Review articleGoogle Scholar
  51. 51.
    G. Zhou, M. Gu, “Direct optical fabrication of three-dimensional photonic crystals in a high refractive index LiNBO3 crystal”, Opt. Lett. 31(18), 2783 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Matthias Heinrich
    • 1
  • Katja Rademaker
    • 1
  • Stefan Nolte
    • 1
  1. 1.Institute of Applied Physics, Friedrich-Schiller-Universität JenaJenaGermany

Personalised recommendations