Skip to main content

Waveguides in Crystalline Materials

  • Chapter
  • First Online:
Femtosecond Laser Micromachining

Part of the book series: Topics in Applied Physics ((TAP,volume 123))

Abstract

Crystalline media offer a variety of unique properties, such as even order nonlinearities, birefringence, and broad transparency ranges, which make them of great interest for applications in integrated optics. However, the extension of femtosecond laser direct inscription techniques [Nolte et al., Appl. Phys. A 77, 109 (2003), J. Mod. Opt. 51, 2533 (2004); Itoh et al. MRS Bull. 31, 620 (2006); Gattass, Mazur, Nature 2, 219–225 (2008); Della Valle et al., J. Opt. A: Pure Appl. Opt. 11 (2009)] with their vast potential for the fabrication of buried three-dimensional structures of arbitrary shapes to crystals has proven to be a challenging task. Results achieved so far in direct writing of optical devices in crystals will be reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.W. Chan, T. Huser, S. Risbud, D.M. Krol, “Structural changes in fused silica after exposure to focused femtosecond laser pulses”, Opt. Lett. 26, 1726 (2001)

    Article  ADS  Google Scholar 

  2. J.W. Chan, T. Huser, S. Risbud, D.M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses”, Appl. Phys. A 76, 367 (2003)

    Article  ADS  Google Scholar 

  3. J.W. Chan, T. Huser, S. Risbud, J.S. Hayden, D.M. Krol, “Waveguide fabrication in phosphate glasses using femtosecond laser pulses”, Appl. Phys. Lett. 82, 2371 (2003)

    Article  ADS  Google Scholar 

  4. T. Gorelik, M. Will, J. Burghoff, A. Tünnermann, “Transmission electron microscopy studies of femtosecond laser induced modifications in quartz”, Appl. Phys. A: Mater. Sci. process., 76, 309 (2003)

    Article  ADS  Google Scholar 

  5. J. Burghoff, “Volumenwellenleiter in kristallinen Medien”, Dissertation, Institut für Angewandte Physik, Friedrich-Schiller-Universität Jena, Jena (2007) Braunschweig Verlag; 1.Auflage: 1 (August 2007), ISBN 3981166515

    Google Scholar 

  6. J. Burghoff, H. Hartung, S. Nolte, A. Tünnermann, “Structural properties of femtosecond laser-induced modifications in LiNbO3”, Appl. Phys. A 86, 165 (2007)

    Article  ADS  Google Scholar 

  7. A. Nejadmalayeri, P. Herman, “Ultrafast laser waveguide writing: lithium niobate and the role of circular polarization and picosecond pulse width,” Opt. Lett. 31, 2987 (2006)

    Article  ADS  Google Scholar 

  8. L. Gui, B. Xu, T.C. Chong, “Microstructure in Lithium Niobate by Use of Focused Femtosecond Laser Pulses” IEEE Photonics Technol. Lett. 16, 1337 (2004)

    Google Scholar 

  9. R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H.T. Bookey, R.R. Thomson, N.D. Psaila, A.K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient”, Appl. Phys. Lett. 90, 241107 (2007)

    Article  ADS  Google Scholar 

  10. J. Burghoff, C. Grebing, S. Nolte, A. Tünnermann, “Waveguides in lithium niobate fabricated by focused ultrashort laser pulses”, Appl. Surf. Sci. 253, 7899 (2007)

    Article  ADS  Google Scholar 

  11. J. Thomas, J. Burghoff, M. Heinrich, S. Nolte, A. Ancona, A. Tünnermann, “Femtosecond laser-written quasi-phase-matched waveguides in lithium niobate”, Appl. Phys. Lett. 91, 151108 (2007)

    Article  ADS  Google Scholar 

  12. A. Nejadmalayeri, P. Herman, J. Burghoff, M. Will, S. Nolte, A. Tünnermann, “Inscription of optical waveguides in crystalline silicon by mid-infrared femtosecond laser pulses”, Opt. Lett. 30, 964 (2005)

    Article  ADS  Google Scholar 

  13. Y. Li, P. Lu, N. Dai, et al. Surface relief diffraction gratings written on beta − BaB2O4 crystal by femtosecond pulses, Appl. Phys. B-Lasers Opt. 88(2), 227–230 (2007)

    Article  ADS  Google Scholar 

  14. F. Dreisow, J. Thomas, J. Burghoff, A. Ancona, M. Heinrich, S. Nolte, A. Tuennermann, “Efficient frequency doubling in fs-laser written waveguides in PPLN and BBO,” SPIE Photonics West/LASE 2008, paper 6879A-34

    Google Scholar 

  15. B. McMillen, K.P. Chen, H. An, S. Fleming, Vincent Hartwell, and David Snoke, “Waveguiding and nonlinear optical properties of three-dimensional waveguides in LiTaO3 written by high-repetition rate ultrafast laser,” Appl. Phys. Lett. 93, 111106 (2008)

    Article  ADS  Google Scholar 

  16. B. McMillen, K.P. Chen, D. Jaque, “Microstructural imaging of high repetition rate ultrafast laser written LiTaO3 waveguides,” Appl. Phys. Lett. 94, 081106 (2009)

    Article  ADS  Google Scholar 

  17. K.-I. Kawamura, M. Hirano, T. Kamiya, H. Hosono, Femtosecond-laser-encoded distributed-feedback color center laser in lithium fluoride single crystal, J. Non-Cryst. Solids 352, 2347–2350 (2006)

    Article  ADS  Google Scholar 

  18. A. Ródenas, J.A. Sanz García, D. Jaque, G.A. Torchia, C. Mendez, I. Arias, L. Roso, F. Agulló-Rueda, “Optical investigation of femtosecond laser induced microstress in neodymium doped lithium niobate crystals”, J. Appl. Phys. 100, 033521 (2006)

    Article  ADS  Google Scholar 

  19. M.V. Dubov, L. Krushchev, I. Bennion, A.G. Okhrimchuk, A.V. Shectakov, “Waveguide inscription in YAG:Cr4 +  crystals by femtosecond laser irradiation, paper CWA49, CLEO (2004)

    Google Scholar 

  20. A.G. Okhrimchuk, A.V. Shestakov, I. Khrushchev, J. Mitchell, “Depressed cladding, buried waveguide laser formed in a YAG:Nd3 +  crystal by femtosecond laser writing,” Opt. Lett. 30, 2248 (2005)

    Article  ADS  Google Scholar 

  21. J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, A. Tünnermann, Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser, Special Issue Appl. Phys. B (2009)

    Google Scholar 

  22. J. Siebenmorgen, K. Rademaker, S. Nolte, G. Huber, Femtosecond laser written stress-induced Nd:YAG channel waveguide laser, THoD.7, Europhoton, Paris (2008)

    Google Scholar 

  23. J. Siebenmorgen, T. Calmano, K. Petermann, G. Huber, “Fabrication of a stress-induced Nd:YAG channel waveguide laser using fs-Laser pulses”, Advanced Solid-State Photonics, MB29, Denver, USA (2009)

    Google Scholar 

  24. G.A. Torchia, A. Rodenas, A. Benayas, E. Canelar, L. Roso, D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminium garnet ceramic waveguides”, Appl. Phys. Lett. 92, 111103 (2008)

    Article  ADS  Google Scholar 

  25. A. Rodénas, G.A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations”, Appl. Phys. B 95(1), 85–96 (2009)

    Article  ADS  Google Scholar 

  26. G.A. Torchia, P.F. Mailán, A. Rodenas, D. Jaque, C. Mendez, L. Roso, “Femtosecond laser written surface waveguides fabricated in Nd:YAG ceramics”, Opt. Exp. 15, 13266–13271 (2007)

    Article  ADS  Google Scholar 

  27. V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R.P. Salathé, M. Pollnau, R. Osellame, G. Cerullo, P. Laporta, “Femtosecond-irradiation-induced refractive-index changes and channel waveguiding in bulk Ti3+:Sapphire,” Appl. Phys. Lett. 85, 1122 (2004)

    Article  ADS  Google Scholar 

  28. C.N. Borca, V. Apostolopoulos, F. Gardillou, H.G. Limberger, M. Pollnau, R.-P. Salathé, “Buried channel waveguides in Yb-doped KY(WO4)2 crystals”, Appl. Surf. Sci. 253, 8300–8303 (2007)

    Article  ADS  Google Scholar 

  29. J. Burghoff, C. Grebing, S. Nolte, A. Tünnermann, “Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate”, Appl. Phys. Lett. 89, 081108 (2006)

    Article  ADS  Google Scholar 

  30. G.L. Destefanis, J.P. Gailliard, E.L. Ligeon, S. Valette, B.W. Farmery, P.D. Townsend, A. Perez, The formation of waveguides and modulators in LiNbO3 by ion implantation, J. Appl. Phys. 50(12), 7898–7905 (1979)

    Article  ADS  Google Scholar 

  31. J.L. Jackel, C.E. Rice, J.J. Veselka: Proton-Exchange for high-index waveguides in LiNbO3, Appl. Phys. Lett. 41(7), 607–608 (1982)

    Article  ADS  Google Scholar 

  32. C. Méndez, G.A. Torchia, D. Delgado, I. Arias, L. Roso, “Fabrication and characterization of Mach-Zehnder devices in LiNbO3 written with femtosecond pulses”, Proc. Of IEEE/LEOS workshop on fibers and optical passive components, pp. 131 (2005)

    Google Scholar 

  33. Y. Liao, J. Xu, Y. Cheng, Z. Zhou, F. He, H. Sun, J. Song, X. Wang, Z. Xu, K. Sugioka, K. Midorikawa, “Electrooptic integration of embedded electrodes and waveguides in LiNbO3 using a femtosecond laser”, Opt. Lett. 33(19), 2281 (2008)

    Google Scholar 

  34. S. Ringleb, K. Rademaker, S. Nolte, A. Tünnermann, “Optical waveguide devices and electrooptic modulation in ultrashort-pulse laser written lithium niobate crystals” (DPG Tagung, Hamburg, 2009)

    Google Scholar 

  35. Y. Sikorski, A.A. Said, P. Bado, R. Maynard, C. Florea, K.A. Winick, Electron. Lett. 36, 226 (2000)

    Article  Google Scholar 

  36. S. Taccheo, G. Della Valle, R. Osellame, G. Cerullo, N. Chiodo, P. Laporta, O. Svelto, A. Killi, U. Morgner, M. Lederer, D. Kopf, “Er:Yb-doped waveguide laser fabricated by femtosecond laser pulses,” Opt. Lett. 29, 2626 (2004)

    Article  ADS  Google Scholar 

  37. L. Laversenne, P. Hoffmann, M. Pollnau, P. Moretti, J. Mugnier, Designable buried waveguides in sapphire by proton implantation, Appl. Phys. Lett. 85, 22, 5167–5169 (2004)

    Article  ADS  Google Scholar 

  38. C. Grivas, D.P. Sheperd, R.W. Eason, L. Laversenne, P. Moretti, C.N. Borca, M. Pollnau, “Room-temperature continuos-wave operation of Ti:sapphire buried channel-waveguide lasers fabricated via proton implantation”, Opt. Lett. 31(23), 3450–3452 (2006)

    Article  ADS  Google Scholar 

  39. Y.E. Romanyuk, C.N. Borca, M. Pollnau, S. Rivier, V. Petrov, U. Griebner, “Yb-doped KY(WO4)2 planar waveguide laser”, Opt. Lett. 31(1), 53–55 (2006)

    Article  ADS  Google Scholar 

  40. F. Gardillou, Y.E. Romanyuk, C.N. Borca, R.-P. Salathé, M. Pollnau, “Lu, Gd codoped KY(WO4)2:Yb epitaxial layers: towards integrated optics based on KY(WO4)2”, Opt. Lett. 32(5), 488–490 (2007)

    Article  ADS  Google Scholar 

  41. J. Siebenmorgen, T. Calmano, O. Hellmig, K. Petermann, G. Huber, “Efficient Femtosecond Laser Written Nd:YAG Channel Waveguide Laser with an Output Power of more than 1 W”, CLEO Europe Conference, paper CJ7.1 (2009)

    Google Scholar 

  42. M. Heinrich, A. Szameit, F. Dreisow, S. Döring, J. Thomas, A. Ancona, S. Nolte, A. Tünnermann, “Evanescent coupling in arrays of type II femtosecond laser-written waveguides in bulk x-cut lithium niobate,” Appl. Phys. Lett. 93, 101111 (2008)

    Article  ADS  Google Scholar 

  43. R.R. Gattass, E. Mazur, “Femtosecond laser micromachining in transparent materials”, Nature 2, 219–225 (2008)

    Google Scholar 

  44. K. Itoh, W. Watanabe, S. Nolte, C.B. Schaffer, “Ultrafast Processes for Bulk Modification of Transparent Materials”, MRS Bull. 31, 620 (2006)

    Article  Google Scholar 

  45. S. Nolte, M. Will, J. Burghoff, A. Tünnermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics”, Appl. Phys. A 77, 109 (2003)

    Article  ADS  Google Scholar 

  46. S. Nolte, M. Will, J. Burghoff, A. Tünnermann, “Ultrafast laser processing: New options for 3D photonic structures”, J. Mod. Opt. 51, 2533 (2004)

    Article  ADS  Google Scholar 

  47. A. Ródenas, G. Zhou, D. Jaque, M. Gu, “Direct laser writing of three-dimensional photonic structures in Nd:yttrium aluminium garnet laser ceramics”, Appl. Phys. Lett. 93, 151104 (2008)

    Article  ADS  Google Scholar 

  48. R.R. Thomson, S. Campbell, I.J. Blewett, A.K. Kar, D.T. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett. 88, 111109 (2006)

    Article  ADS  Google Scholar 

  49. G.A. Torchia, C. Mendez, I. Arias, L. Roso, A. Rodenas, D. Jaque, “Laser gain in femtosecond microstructured Nd:MgO:LiNbO3 crystals”, Appl. Phys. B 83, 559 (2006)

    Article  ADS  Google Scholar 

  50. G. Della Valle, R. Osellame, P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses”, J. Opt. A Pure Appl. Opt. 11, (2009) – Review article

    Google Scholar 

  51. G. Zhou, M. Gu, “Direct optical fabrication of three-dimensional photonic crystals in a high refractive index LiNBO3 crystal”, Opt. Lett. 31(18), 2783 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Heinrich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Heinrich, M., Rademaker, K., Nolte, S. (2012). Waveguides in Crystalline Materials. In: Osellame, R., Cerullo, G., Ramponi, R. (eds) Femtosecond Laser Micromachining. Topics in Applied Physics, vol 123. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23366-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23366-1_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23365-4

  • Online ISBN: 978-3-642-23366-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics