Force Sensing and Control in Robot-Assisted Suspended Cell Injection System

  • Haibo Huang
  • Dong Sun
  • Hao Su
  • James K. Mills
Part of the Intelligent Systems Reference Library book series (ISRL, volume 26)


Stimulated by state-of-the-art robotic and computer technology, cell injection automation aims to scale and seamlessly transfer the human hand movements into more precise and fast movements of the micromanipulator. This chapter presents a robotic cell-injection system for automatic injection of batch-suspended cells. To facilitate the process, these suspended cells are held and fixed to a cell array by a specially designed cell holding device, and injected one by one through an “out-ofplane” cell injection process. Starting from image identifying the embryos and injector pipette, a proper batch cell injection process, including the injection trajectory of the pipette, is designed for this automatic suspended cell injection system. A micropipette equipped with a PVDF micro force sensor to measure real time injection force, is integrated in the proposed system. Through calibration, an empirical relationship between the cell injection force and the desired injector pipette trajectory is obtained in advance. Then, after decoupling the out-of-plane cell injection into a position control in XY horizontal plane and an impedance control in the Z- axis, a position and force control algorithm is developed for controlling the injection pipette. The depth motion of the injector pipette, which cannot be observed by microscope, is indirectly controlled via the impedance control, and the desired force is determined from the online XY position control and the cell calibration results. Finally, experimental results demonstrate the effectiveness of the proposed approach.


Force Control Force Sensor Cell Injection Impedance Control Visual Servoing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Accessed (2011),
  2. 2.
    Accessed (2011),
  3. 3.
    Accessed (2011),
  4. 4.
    Ammi, M., Ferreira, A.: Realistic visual and haptic rendering for biological-cell injection. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation, ICRA 2005, pp. 918–923 (2005)Google Scholar
  5. 5.
    Arai, F., Sugiyama, T., Fukuda, T., Iwata, H., Itoigawa, K.: Micro tri-axial force sensor for 3d bio-manipulation. In: Proceedings. 1999 IEEE International Conference on Robotics and Automation (1999)Google Scholar
  6. 6.
    Cho, S.Y., Shim, J.H.: A new micro biological cell injection system. In: Proceedings. 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2004 (2004)Google Scholar
  7. 7.
    Fujisato, T., Abe, S., Tsuji, T., Sada, M., Miyawaki, F., Ohba, K.: The development of an ova holding device made of microporous glass plate for genetic engineering. In: Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (1998)Google Scholar
  8. 8.
    Huang, H., Sun, D., Mills, J., Cheng, S.H.: Integrated vision and force control in suspended cell injection system: Towards automatic batch biomanipulation. In: IEEE International Conference on Robotics and Automation, ICRA 2008, pp. 3413–3418 (2008)Google Scholar
  9. 9.
    Huang, H., Sun, D., Mills, J., Li, W., Cheng, S.H.: Visual-based impedance control of out-of-plane cell injection systems. IEEE Transactions on Automation Science and Engineering 6(3), 565–571 (2009)CrossRefGoogle Scholar
  10. 10.
    Huang, H.B., Sun, D., Mills, J.K., Cheng, S.H.: Robotic cell injection system with position and force control: toward automatic batch biomanipulation. Trans. Rob. 25, 727–737 (2009), CrossRefGoogle Scholar
  11. 11.
    Kallio, P.: Capillary pressure microinjection of living adherent cells: challenges in automation. Journal of Micromechatronics 3(32), 189–220 (2006)CrossRefGoogle Scholar
  12. 12.
    Kawaji, A.: 3d calibration for micro-manipulation with precise position measurement. Journal of Micromechatronics 1(14), 117–130 (2001)CrossRefGoogle Scholar
  13. 13.
    Kim, D.H., Yun, S., Kim, B.: Mechanical force response of single living cells using a microrobotic system. In: Proceedings. 2004 IEEE International Conference on Robotics and Automation, ICRA (2004)Google Scholar
  14. 14.
    Kumar, R., Kapoor, A., Taylor, R.: Preliminary experiments in robot/human cooperative microinjection. In: Proceedings. 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2003, vol. 3&4, pp. 3186–3191 (2003)Google Scholar
  15. 15.
    Lai, K., Kwong, C., Li, W.: Kl probes for robotic-based cellular nano surgery. In: 2003 Third IEEE Conference on Nanotechnology, IEEE-NANO 2003, vol. 1&2, pp. 152–155 (2003)Google Scholar
  16. 16.
    Li, G., Xi, N.: Calibration of a micromanipulation system. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (2002)Google Scholar
  17. 17.
    Li, X., Zong, G., Bi, S.: Development of global vision system for biological automatic micro-manipulation system. In: Proceedings. 2001 IEEE International Conference on Robotics and Automation, ICRA (2001)Google Scholar
  18. 18.
    Liu, X., Lu, Z., Sun, Y.: Orientation control of biological cells under inverted microscopy. IEEE/ASME Transactions on Mechatronics (99), 1–7 (2010), doi:10.1109/TMECH.2010.2056380Google Scholar
  19. 19.
    Liu, X., Sun, Y.: Microfabricated glass devices for rapid single cell immobilization in mouse zygote microinjection. Biomedical Microdevices 11(6), 1169–1174 (2009)CrossRefGoogle Scholar
  20. 20.
    Lu, Z., Chen, P.C.Y., Nam, J., Ge, R., Lin, W.: A micromanipulation system with dynamic force-feedback for automatic batch microinjection. Journal of Micromechanics and Microengineering 17(2), 314 (2007)CrossRefGoogle Scholar
  21. 21.
    Matsuoka, H., Komazaki, T., Mukai, Y., Shibusawa, M., Akane, H., Chaki, A., Uetake, N., Saito, M.: High throughput easy microinjection with a single-cell manipulation supporting robot. Journal of Biotechnology 116(2), 185–194 (2005)CrossRefGoogle Scholar
  22. 22.
    Mattos, L., Grant, E., Thresher, R.: Semi-automated blastocyst microinjection. In: Proceedings 2006 IEEE International Conference on Robotics and Automation, ICRA 2006, pp. 1780–1785 (2006)Google Scholar
  23. 23.
    Pillarisetti, A., Pekarev, M., Brooks, A., Desai, J.: Evaluating the effect of force feedback in cell injection. IEEE Transactions on Automation Science and Engineering 4(3), 322–331 (2007)CrossRefGoogle Scholar
  24. 24.
    Qu, W.T.: Chord midpoint hough transform based ellipse detection method. Journal of Zhejiang University (Engineering Science) 39(8), 1132–1135 (2005)Google Scholar
  25. 25.
    Sun, D., Liu, Y.: Modeling and impedance control of a two-manipulator system handling a flexible beam. In: Proceedings. 1997 IEEE International Conference on Robotics and Automation, vol. 2, pp. 1787–1792 (1997)Google Scholar
  26. 26.
    Sun, Y., Nelson, B.J.: Biological Cell Injection Using an Autonomous MicroRobotic System. The International Journal of Robotics Research 21(10-11), 861–868 (2002)CrossRefGoogle Scholar
  27. 27.
    Sun, Y., Wan, K.T., Roberts, K., Bischof, J., Nelson, B.: Mechanical property characterization of mouse zona pellucida. IEEE Transactions on NanoBioscience 2(4), 279–286 (2003)CrossRefGoogle Scholar
  28. 28.
    Tan, K.K., Ng, D.C., Xie, Y.: Optical intra-cytoplasmic sperm injection with a piezo micromanipulator. In: The 4th World Congress on Intelligent Control and Automation, 2002. Proceedings (2002)Google Scholar
  29. 29.
    Tan, Y., Sun, D., Huang, W., Cheng, S.H.: Mechanical modeling of biological cells in microinjection. IEEE Transactions on NanoBioscience 7(4), 257–266 (2008)CrossRefGoogle Scholar
  30. 30.
    Wang, W., Liu, X., Gelinas, D., Ciruna, B., Sun, Y.: A fully automated robotic system for microinjection of zebrafish embryos. PLoS ONE 2(9), e862 (2007)CrossRefGoogle Scholar
  31. 31.
    Xie, Y., Sun, D., Liu, C., Cheng, S.H.: An adaptive impedance force control approach for robotic cell microinjection. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2008, pp. 907–912 (2008)Google Scholar
  32. 32.
    Xie, Y., Sun, D., Liu, C., Cheng, S.H.: A flexible force-based cell injection approach in a bio-robotic system. In: Proceedings 2009 IEEE International Conference on Robotics and Automation (2009)Google Scholar
  33. 33.
    Xie, Y., Sun, D., Liu, C., Tse, H., Cheng, S.: A force control approach to a robot-assisted cell microinjection system. Int. J. Rob. Res. 29, 1222–1232 (2010), CrossRefGoogle Scholar
  34. 34.
    Xudong, L.: Automatic micromanipulating system for biological applications with visual servo control. Journal of Micromechatronics 1(4), 345–363 (2002)Google Scholar
  35. 35.
    Sun, Y., Wejinya, U.C., Xi, N., Pomeroy, C.A.: Force measurement and mechanical characterization of living drosophila embryos for human medical study. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine 221, 99–112 (2006)Google Scholar
  36. 36.
    Yu, S., Nelson, B.: Microrobotic cell injection. In: Proceedings. 2001 IEEE International Conference on Robotics and Automation, ICRA (2001)Google Scholar
  37. 37.
    Zhang, X.J., Zappe, S., Bernstein, R.W., Sahin, O., Chen, C.C., Fish, M., Scott, M.P., Solgaard, O.: Micromachined silicon force sensor based on diffractive optical encoders for characterization of microinjection. Sensors and Actuators A: Physical 114(2-3), 197–203 (2004); Selected papers from Transducers 03CrossRefGoogle Scholar
  38. 38.
    Zhou, Y., Nelson, B.J., Vikramaditya, B.: Integrating optical force sensing with visual servoing for microassembly. J. Intell. Robotics Syst. 28, 259–276 (2000)zbMATHCrossRefGoogle Scholar

Copyright information

© IFIP 2012

Authors and Affiliations

  • Haibo Huang
    • 1
  • Dong Sun
    • 2
  • Hao Su
    • 3
  • James K. Mills
    • 4
  1. 1.Robotics and Micro-systems CenterSoochow UniversitySuZhouChina
  2. 2.Department of Manufacturing Engineering and Engineering ManagementCity University of Hong KongHong Kong
  3. 3.Automation and Interventional Medicine (AIM) Laboratory, Department of Mechanical EngineeringWorcester Polytechnic InstituteWorcesterUSA
  4. 4.Department of Mechanical and Industrial EngineeringUniversity of TorontoTorontoCanada

Personalised recommendations