Advertisement

Operating High-DoF Articulated Robots Using Virtual Links and Joints

  • Marsette A. Vona
Part of the Intelligent Systems Reference Library book series (ISRL, volume 26)

Abstract

This chapter presents the theory, implementation, and application of a novel operations system for articulated robots with large numbers (10s to 100s) of degrees-of-freedom (DoF), based on virtual articulations and kinematic abstractions. Such robots are attractive in some applications, including space exploration, due to their application flexibility. But operating them can be challenging: they are capable of many different kinds of motion, but often this requires coordination of many joints. Prior methods exist for specifying motions at both low and high-levels of detail; the new methods fill a gap in the middle by allowing the operator to be as detailed as desired. The presentation is fully general and can be directly applied across a broad class of 3D articulated robots.

Keywords

Operating Robot Inverse Kinematic Kinematic Chain Priority Level Revolute Joint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baerlocher, P., Boulic, R.: An inverse kinematics architecture enforcing an arbitrary number of strict priority levels. Visual Computer 20, 402–417 (2004)CrossRefGoogle Scholar
  2. 2.
    Baerlocher, P.: Inverse Kinematics Techniques for the Interactive Posture Control of Articulated Figures. PhD thesis, EPFL (2001)Google Scholar
  3. 3.
    Bruyninckx, H.: Open RObot COntrol Software (OROCOS), http://www.orocos.org
  4. 4.
    Bruyninckx, H.: Kinematic Models for Robot Compliant Motion with Identification of Uncertanties. PhD thesis, Katholieke Universiteit Leuven (1995)Google Scholar
  5. 5.
    Chiacchio, P., Chiaverini, S., Sciavicco, L., Siciliano, B.: Closed-loop inverse kinematics schemes for constrained redundant manipulators with task space augmentation and task priority strategy. IJRR 10(4), 410–425 (1991)CrossRefGoogle Scholar
  6. 6.
    Chirikjian, G., Burdick, J.: The kinematics of hyper-redundant robot locomotion. IEEE Trans. on Robotics and Automation 11(6), 781–793 (1995)CrossRefGoogle Scholar
  7. 7.
    Davis, E.: Approximation and abstraction in solid object kinematics. Technical Report TR1995-706, NYU Computer Science (1995)Google Scholar
  8. 8.
    Detweiler, C., Vona, M., Kotay, K., Rus, D.: Hierarchical control for self-assembling mobile trusses with passive and active links. In: IEEE International Conference on Robotics and Automation, pp. 1483–1490 (2006)Google Scholar
  9. 9.
    Detweiler, C., Vona, M., Yoon, Y., Yun, S., Rus, D.: Self-assembling mobile linkages. IEEE Robotics and Automation Magazine 14, 45–55 (2007)CrossRefGoogle Scholar
  10. 10.
    Diaz-Calderon, A., Nesnas, I.A.D., Nayar, H.D., Kim, W.S.: Towards a unified representation of mechanisms for robotic control software. International Journal of Advanced Robotic Systems 3(1), 061–066 (2006)Google Scholar
  11. 11.
    Dobrjanskyj, L., Freudenstein, F.: Some applications of graph theory to the structural analysis of mechanisms. ASME Journal of Engineering for Industry, 153–158 (1967)Google Scholar
  12. 12.
    Featherstone, R., Orin, D.: Robot dynamics: Equations and algorithms. In: IEEE ICRA, pp. 826–834 (2000)Google Scholar
  13. 13.
    Fitch, R., Butler, Z.: Million module march: Scalable locomotion for large self-reconfiguring robots. International Journal of Robotics Research 27(3/4), 331–343 (2008)Google Scholar
  14. 14.
    Flückiger, L.: A robot interface using virtual reality and automatic kinematics generator. In: Int. Symposium on Robotics, pp. 123–126 (April 1998)Google Scholar
  15. 15.
    Fukuda, T., Nakagawa, S.: Dynamically reconfigurable robotic system. In: IEEE ICRA, pp. 1581–1586 (1988)Google Scholar
  16. 16.
    Gleicher, M.L.: A Differential Approach to Graphical Interaction. PhD thesis, Carnegie Mellon University, School of Computer Science (1994)Google Scholar
  17. 17.
    Hauser, K., Bretl, T., Latombe, J.-C., Wilcox, B.: Motion planning for a six-legged lunar robot. In: WAFR, pp. 301–316 (2006)Google Scholar
  18. 18.
    Ivlev, O., Gräser, A.: An analytical method for the inverse kinematics of redundant robots. In: Proceedings of 3rd ECPD Int. Conf. on Advanced Robots, Intelligent Automation and Active Systems, pp. 416–421 (1997)Google Scholar
  19. 19.
    Ivlev, O., Gräser, A.: Resolving redundancy of series kinematic chains through imaginary links. In: Proceedings of CESA 1998 IMACS Multiconference, Computational Engineering in Systems Applications, pp. 477–482 (1998)Google Scholar
  20. 20.
    Kokkevis, E.: Practical physics for articulated characters. In: Game Developers Conference (2004)Google Scholar
  21. 21.
    Liégeois, A.: Automatic supervisory control of the configuration and behavior of multibody mechanisms. IEEE Transactions on Systems, Man, and Cybernetics, SMC 7(12), 868–871 (1977)zbMATHCrossRefGoogle Scholar
  22. 22.
    Mittman, D., Norris, J., Powell, M., Torres, R., McQuin, C., Vona, M.: Lessons Learned from All-Terrain Hex-Limbed Extra-Terrestrial Explorer Robot Field Test Operations at Moses Lake Sand Dunes, Washington. In: AIAA Space (2008)Google Scholar
  23. 23.
    Moll, M., Rus, D.: Special issue on self-reconfiguring modular robots. International Journal of Robotics Research 27(3/4) (March/April 2008)Google Scholar
  24. 24.
    Nakaoka, S., Nakazawa, A., Yokoi, K., Hirukawa, H., Ikeuchi, K.: Generating whole body motions for a biped humanoid robot from captured human dances. In: IEEE ICRA, pp. 3905–3910 (2003)Google Scholar
  25. 25.
    Phillips, C.B., Zhao, J., Badler, N.I.: Interactive real-time articulated figure manipulation using multiple kinematic constraints. In: Proceedings of SIGGRAPH, pp. 245–250 (1990)Google Scholar
  26. 26.
    Pratt, J., Chew, C., Torres, A., Dilworth, P., Pratt, G.: Virtual model control: An intuitive approach for bipedal locomotion. IJRR 20(2), 129–143 (2001)CrossRefGoogle Scholar
  27. 27.
    Pratt, J.E.: Virtual model control of a biped walking robot. Master’s thesis, Massachusetts Institute of Technology (1995)Google Scholar
  28. 28.
    Pryor, M.: Task-Based Resource Allocation for Improving the Reusability of Redundant Manipulators. PhD thesis, University of Texas at Austin (2002)Google Scholar
  29. 29.
    Pryor, M.W., Taylor, R.C., Kapoor, C., Tesar, D.: Generalized software components for reconfiguring hyper-redundant manipulators. IEEE/ASME Transactions on Mechatronics 7(4), 475–478 (2002)CrossRefGoogle Scholar
  30. 30.
    Rus, D., Butler, Z., Kotay, K., Vona, M.: Self-reconfiguring robots. Communications of the ACM 45(3), 39–45 (2002)CrossRefGoogle Scholar
  31. 31.
    Rus, D., Chirikjian, G.S.: Special issue on self-reconfiguable robots. Autonomous Robots 10(1) (January 2001)Google Scholar
  32. 32.
    Siciliano, B., Slotine, J.-J.E.: A general framework for managing multiple tasks in highly redundant robotic systems. In: Fifth International Conference on Advanced Robotics, pp. 1211–1216 (1991)Google Scholar
  33. 33.
    Smith, R.: Open dynamics engine (2008), http://www.ode.org
  34. 34.
    Smith, T., Barreiro, J., Smith, D., SunSpiral, V., Chavez-Clemente, D.: ATHLETE’s Feet: Multi-Resolution Planning for a Hexapod Robot. In: ICAPS (2008)Google Scholar
  35. 35.
    Vassilvitskii, S., Kubica, J., Rieffel, E., Suh, J., Yim, M.: On the general reconfiguration problem for expanding cube style modular robots. In: IEEE ICRA, pp. 801–808 (2002)Google Scholar
  36. 36.
    Vona, M., Mittman, D., Norris, J., Rus, D.: Using virtual articulations to operate high-DoF manipulation and inspection motions. In: FSR (2009)Google Scholar
  37. 37.
    Vona, M.: Hierarchical decomposition and kinematic abstraction with virtual articulations. In: Advances in Robot Kinematics, pp. 33–43 (2010)Google Scholar
  38. 38.
    Vona, M.: MSim: Mixed Real/Virtual Simulator and Interface (2011), http://www.ccs.neu.edu/research/gpc/msim
  39. 39.
    Vona, M.A.: Virtual Articulation and Kinematic Abstraction in Robotics. PhD thesis, EECS, Massachusetts Institute of Technology (August 2009)Google Scholar
  40. 40.
    Welman, C.: Inverse kinematics and geometric constraints for articulated figure manipulation. Master’s thesis, Simon Fraser University (1993)Google Scholar
  41. 41.
    Wilcox, B., Litwin, T., Biesiadecki, J., Matthews, J., Heverly, M., Morrison, J., Townsend, J., Ahmad, N., Sirota, A., Cooper, B.: ATHLETE: A cargo handling and manipulation robot for the moon. Field Robotics 24, 421–434 (2007)CrossRefGoogle Scholar
  42. 42.
    Williams, R., Mayhew, J.: Control of truss-based manipulators using virtual serial models. In: ASME DETC (1996)Google Scholar
  43. 43.
    Wood, G.D., Kennedy, D.C.: Simulating mechanical systems in simulink with SimMechanics. Technical report, The Mathworks (2003)Google Scholar
  44. 44.
    Zanganeh, K.E., Angeles, J.: A formalism for the analysis and design of modular kinematic structures. IJRR 17(7), 720–730 (1998)CrossRefGoogle Scholar

Copyright information

© IFIP 2012

Authors and Affiliations

  • Marsette A. Vona
    • 1
  1. 1.College of Computer and Information ScienceNortheastern UniversityBostonUSA

Personalised recommendations