High-Field MRI-Compatible Needle Placement Robots for Prostate Interventions: Pneumatic and Piezoelectric Approaches

  • Hao Su
  • Gregory A. Cole
  • Gregory S. Fischer
Part of the Intelligent Systems Reference Library book series (ISRL, volume 26)


Magnetic resonance imaging (MRI) can be a very effective imaging modality for live guidance during surgical procedures. The rationale of MRI-guided surgery with robot-assistance is to perform surgical interventions utilizing “real-time” image feedback while minimize operation time and improves the surgical outcomes. However, challenges arise from electromagnetic compatibility within the high-field (1.5T or greater) MRI environment and mechanical constraints due to the confined close-bore space. This chapter reviews two distinct MRI-compatible approaches for image-guided transperineal prostate needle placement. It articulates the robotic mechanism, actuator and sensor design, controller design and system integration for a pneumatically actuated robotic needle guide and a piezoelectrically actuated needle placement system. The two degree-of-freedom (DOF) pneumatic robot with manual needle insertion has a signal to noise ratio (SNR) loss limited to 5% with alignment accuracy under servo pneumatic control better than 0.94mm per axis. While the 6-DOF piezoelectrically actuated robot is the first demonstration of a novel multi piezoelectric actuator drive with less than 2% SNR loss for high-field MRI operating at full speed during imaging. Preliminary experiments in phantom studies evaluates system MRI compatibility, workflow, visualization and targeting accuracy.


Needle Placement Pneumatic Cylinder Prostate Brachytherapy Needle Driver Scanner Room 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Standard test method for measurement of magnetically induced displacement force on passive implants in the magnetic resonance environment. F2052, vol. 13.01. American Society for Testing and Materials (ASTM) (2002)Google Scholar
  2. 2.
    Determination of Signal-to-Noise Ratio (SNR) in Diagnostic Magnetic Resonance Imaging. NEMA Standard Publication MS 1-2008. The Association of Electrical and Medical Imaging Equipment Manufacturers (2008)Google Scholar
  3. 3.
    Blumenfeld, P., Hata, N., Dimaio, S., Zou, K., Haker, S., Fichtinger, G., Tempany, C.: Transperineal prostate biopsy under magnetic resonance image guidance: A needle placement accuracy study 26(3), 688–694 (2007)Google Scholar
  4. 4.
    Bone, G., Ning, S.: Experimental comparison of position tracking control algorithms for pneumatic cylinder actuators. IEEE/ASME Transactions on Mechatronics 12(5), 557–561 (2007)CrossRefGoogle Scholar
  5. 5.
    van den Bosch, M.R., Moman, M.R., van Vulpen, M., Battermann, J.J., Duiveman, E., van Schelven, L.J., de Leeuw, H., Lagendijk, J.J.W., Moerland, M.A.: MRI-guided robotic system for transperineal prostate interventions: proof of principle. Physics in Medicine and Biology 55(5), N133 (2010)CrossRefGoogle Scholar
  6. 6.
    Cavusoglu, M.C., Sherman, A., Tendick, F.: Design of bilateral teleoperation controllers for haptic exploration and telemanipulation of soft environments. IEEE Transactions on Robotics and Automation 18(4), 641–647 (2002)CrossRefGoogle Scholar
  7. 7.
    Chinzei, K., Miller, K.: Towards MRI guided surgical manipulator. Med. Sci. Monit. 7(1), 153–163 (2001)Google Scholar
  8. 8.
    Cole, G., Harrington, K., Su, H., Camilo, A., Pilitsis, J., Fischer, G.: Closed-loop actuated surgical system utilizing real-time in-situ MRI guidance. In: 12th International Symposium on Experimental Robotics - ISER 2010, New Delhi and Agra, India (2010)Google Scholar
  9. 9.
    Cole, G., Harrington, K., Su, H., Camilo, A., Pilitsis, J., Fischer, G.: Closed-loop actuated surgical system utilizing real-time in-situ MRI guidance. In: Khatib, O., Kumar, V., Sukhatme, G. (eds.) Experimental Robotics, Springer Tracts in Advanced Robotics. Springer, Heidelberg (2011)Google Scholar
  10. 10.
    D’Amico, A.V., Cormack, R., Tempany, C.M., Kumar, S., Topulos, G., Kooy, H.M., Coleman, C.N.: Real-time magnetic resonance image-guided interstitial brachytherapy in the treatment of select patients with clinically localized prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 42(3), 507–515 (1998)CrossRefGoogle Scholar
  11. 11.
    DiMaio, S.P., Pieper, S., Chinzei, K., Hata, N., Haker, S.J., Kacher, D.F., Fichtinger, G., Tempany, C.M., Kikinis, R.: Robot-assisted needle placement in open MRI: system architecture, integration and validation. Comput. Aided Surg. 12(1), 15–24 (2007)Google Scholar
  12. 12.
    Elhawary, H., Zivanovic, A., Davies, B., Lamperth, M.: A review of magnetic resonance imaging compatible manipulators in surgery. Proc. Inst. Mech. Eng. H 220(3), 413–424 (2006)Google Scholar
  13. 13.
    Elhawary, H., Zivanovic, A., Rea, M., Davies, B., Besant, C., McRobbie, D., de Souza, N., Young, I., Lampérth, M.: The Feasibility of MR-Image Guided Prostate Biopsy Using Piezoceramic Motors Inside or Near to the Magnet Isocentre. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4190, pp. 519–526. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Firbank, M.J., Coulthard, A., Harrison, R.M., Williams, E.D.: A comparison of two methods for measuring the signal to noise ratio on mr images. Phys. Med. Biol. 44(12), N261–N264 (1999)CrossRefGoogle Scholar
  15. 15.
    Fischer, G., Iordachita, I., Csoma, C., Tokuda, J., DiMaio, S., Tempany, C.M., Hata, N., Fichtinger, G.: MRI-compatible pneumatic robot for transperineal prostate needle placement. IEEE/ASME Transactions on Mechatronics 13(3), 295–305 (2008)CrossRefGoogle Scholar
  16. 16.
    Fu, L., Liu, H., Ng, W.S., Rubens, D., Strang, J., Messing, E., Yu, Y.: Hybrid dosimetry: feasibility of mixing angulated and parallel needles in planning prostate brachytherapy. Med. Phys. 33(5), 1192–1198 (2006)CrossRefGoogle Scholar
  17. 17.
    Futterer, J.J., Misra, S., Macura, K.J.: MRI of the prostate: potential role of robots. Imaging in Medicine 2(5), 583–592 (2010)CrossRefGoogle Scholar
  18. 18.
    Gassert, R., Dovat, L., Lambercy, O., Ruffieux, Y., Chapuis, D., Ganesh, G., Burdet, E., Bleuler, H.: A 2-dof fMRI compatible haptic interface to investigate the neural control of arm movements. In: Proceedings. 2006 Conference on International Robotics and Automation, pp. 3825–3831. IEEE, Piscataway (2006)Google Scholar
  19. 19.
    Gassert, R., Yamamoto, A., Chapuis, D., Dovat, L., Bleuler, H., Burdet, E.: Actuation Methods for Applications in MR Environments. Concepts in Magnetic Resonance Part B: Magnetic Resonance Engineering 29B(4), 191–209 (2006)CrossRefGoogle Scholar
  20. 20.
    Goldenberg, A., Trachtenberg, J., Kucharczyk, W., Yi, Y., Haider, M., Ma, L., Weersink, R., Raoufi, C.: Robotic system for closed-bore MRI-guided prostatic interventions. IEEE/ASME Transactions on Mechatronics 13(3), 374–379 (2008)CrossRefGoogle Scholar
  21. 21.
    Haker, S.J., Mulkern, R.V., Roebuck, J.R., Barnes, A.S., Dimaio, S., Hata, N., Tempany, C.M.: Magnetic resonance-guided prostate interventions. Top Magn. Reson. Imaging 16(5), 355–368 (2005)CrossRefGoogle Scholar
  22. 22.
    Huang, H., Su, H., Chen, H., Mills, J.K.: Piezoelectric driven non-toxic injector for automated cell manipulation. In: Proceedings of MMVR18 (Medicine Meets Virtual Reality), Newport Beach, California, USA (February 2011)Google Scholar
  23. 23.
    Huang, H., Sun, D., Su, H., Mills, J.: Force sensing and control of robot-assisted cell injection. In: Gulrez, T., Hassanien, A. (eds.) Advances in Robotics and Virtual Reality. Springer, Heidelberg (2011)Google Scholar
  24. 24.
    Jemal, A., Siegel, R., Ward, E., Hao, Y., Xu, J., Thun, M.J.: Cancer statistics. CA Cancer J. Clin. 59(4), 225–249 (2009)CrossRefGoogle Scholar
  25. 25.
    Krieger, A., Iordachita, I., Song, S.E., Cho, N., Guion, P., Fichtinger, G., Whitcomb, L.: Development and preliminary evaluation of an actuated MRI-compatible robotic device for MRI-guided prostate intervention. In: 2010 IEEE International Conference on Robotics and Automation (ICRA), May 2010, p. 1066–1073 (2010)Google Scholar
  26. 26.
    Krieger, A., Susil, R.C., Meard, C., Coleman, J.A., Fichtinger, G., Atalar, E., Whitcomb, L.L.: Design of a novel MRI compatible manipulator for image guided prostate interventions. IEEE Trans. Biomed. Eng. 52(2), 306–313 (2005)CrossRefGoogle Scholar
  27. 27.
    Lee, L., Narayanan, M.S., Mendel, F., Krovi, V.N.: Kinematics analysis of in-parallel 5 dof haptic device. In: 2010 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Montreal, Canada (2010)Google Scholar
  28. 28.
    Li, M., Kapoor, A., Mazilu, D., Horvath, K.A.: Pneumatic actuated robotic assistant system for aortic valve replacement under MRI guidance. IEEE Transactions on Biomedical Engineering 58(2), 443–451 (2010)Google Scholar
  29. 29.
    Li, M., Mazilu, D., Horvath, K.A.: Robotic system for transapical aortic valve replacement with MRI guidance. In: Proceedings of the 11th International Conference on Medical Image Computing and Computer-Assisted Intervention, Part II, pp. 476–484. Springer, Heidelberg (2008)Google Scholar
  30. 30.
    Masamune, K., Kobayashi, E., Masutani, Y., Suzuki, M., Dohi, T., Iseki, H., Takakura, K.: Development of an MRI-compatible needle insertion manipulator for stereotactic neurosurgery. J. Image Guid. Surg. 1(4), 242–248 (1995)CrossRefGoogle Scholar
  31. 31.
    Melzer, A., Gutmann, B., Remmele, T., Wolf, R., Lukoscheck, A., Bock, M., Bardenheuer, H., Fischer, H.: Innomotion for percutaneous image-guided interventions. IEEE Engineering in Medicine and Biology Magazine 27(3), 66–73 (2008)CrossRefGoogle Scholar
  32. 32.
    Mewes, P., Tokuda, J., DiMaio, S.P., Fischer, G.S., Csoma, C., Gobi, D.G., Tempany, C., Fichtinger, G., Hata, N.: An integrated MRI and robot control software system for an MR-compatible robot in prostate intervention. In: Proc. IEEE International Conference on Robotics and Automation ICRA 2008 (May 2008)Google Scholar
  33. 33.
    Pondman, K.M., Futerer, J.J., ten Haken, B., Kool, L.J.S., Witjes, J.A., Hambrock, T., Macura, K.J., Barentsz, J.O.: MR-guided biopsy of the prostate: An overview of techniques and a systematic review. European Urology 54(3), 517–527 (2008)CrossRefGoogle Scholar
  34. 34.
    Schouten, M.G., Ansems, J., Renema, W.K.J., Bosboom, D., Scheenen, T.W.J., Futterer, J.J.: The accuracy and safety aspects of a novel robotic needle guide manipulator to perform transrectal prostate biopsies. Medical Physics 37(9), 4744–4750 (2010)CrossRefGoogle Scholar
  35. 35.
    Shellock, F.G.: Magnetic resonance safety update 2002: implants and devices. J. Magn. Reson. Imaging 16(5), 485–496 (2002)CrossRefGoogle Scholar
  36. 36.
    Song, S.E., Cho, N.B., Fischer, G., Hata, N., Tempany, C., Fichtinger, G., Iordachita, I.: Development of a pneumatic robot for MRI-guided transperineal prostate biopsy and brachytherapy: New approaches. In: Proc. IEEE International Conference on Robotics and Automation ICRA (2010)Google Scholar
  37. 37.
    Stoianovici, D., Patriciu, A., Petrisor, D., Mazilu, D., Kavoussi, L.: A new type of motor: pneumatic step motor. IEEE/ASME Transactions on Mechatronics 12(1), 98–106 (2007)CrossRefGoogle Scholar
  38. 38.
    Su, H., Camilo, A., Cole, G., Hata, N., Tempany, C., Fischer, G.S.: High-field MRI compatible needle placement robot for prostate interventions. In: Proceedings of MMVR18 (Medicine Meets Virtual Reality), Newport Beach, California, USA (February 2011)Google Scholar
  39. 39.
    Su, H., Cole, G., Fischer, G.: Active needle steering for percutaneous prostate intervention in high-field MRI. In: 2010 Robotics: Science and Systems Conference, Workshop on Enabling Technologies for Image-Guided Robotic Interventional Procedures, Zaragoza, Spain (August 2010)Google Scholar
  40. 40.
    Su, H., Fischer, G.S.: A 3-axis optical force/torque sensor for prostate needle placement in magnetic resonance imaging environments. In: 2nd Annual IEEE International Conference on Technologies for Practical Robot Applications, IEEE, Boston (2009)Google Scholar
  41. 41.
    Su, H., Harrington, K., Cole, G., Wang, Y., Fischer, G.: Modular needle steering driver for MRI-guided transperineal prostate intervention. In: IEEE International Conference on Robotics and Automation, Workshop on Snakes, Worms and Catheters: Continuum and Serpentine Robots for Minimally Invasive Surgery, Anchorage, AK, USA (May 2010)Google Scholar
  42. 42.
    Su, H., Shang, W., Cole, G., Harrington, K., Gregory, F.S.: Haptic system design for MRI-guided needle based prostate brachytherapy. In: IEEE Haptics Symposium 2010. IEEE, Boston (2010)Google Scholar
  43. 43.
    Su, H., Zervas, M., Cole, G., Furlong, C., Fischer, G.: Real-time MRI-guided needle placement robot with integrated fiber optic force sensing. In: IEEE ICRA 2011 International Conference on Robotics and Automation, Shanghai, China (2011)Google Scholar
  44. 44.
    Su, H., Zervas, M., Furlong, C., Fischer, G.S.: A miniature MRI-compatible fiber-optic force sensor utilizing Fabry-Perot interferometer. In: MEMS and Nanotechnology, Conference Proceedings of the Society for Experimental Mechanics Series, pp. 131–136. Springer, Heidelberg (2011)Google Scholar
  45. 45.
    Sutherland, G.R., Latour, I., Greer, A.D., Fielding, T., Feil, G., Newhook, P.: An image-guided magnetic resonance-compatible surgical robot. Neurosurgery 62(2), 286–292 (2008), discussion 292–3CrossRefGoogle Scholar
  46. 46.
    Suzuki, T., Liao, H., Kobayashi, E., Sakuma, I.: Ultrasonic motor driving method for EMI-free image in MR image-guided surgical robotic system. In: Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems IROS 2007, pp. 522–527 (2007)Google Scholar
  47. 47.
    Terris, M.K., Wallen, E.M., Stamey, T.A.: Comparison of mid-lobe versus lateral systematic sextant biopsies in the detection of prostate cancer. Urol. Int. 59(4), 239–242 (1997)CrossRefGoogle Scholar
  48. 48.
    Tokuda, J., Fischer, G.S.: OpenIGTLink: an open network protocol for image-guided therapy environment. Int. J. Med. Robot. 5(4), 423–434 (2009)CrossRefGoogle Scholar
  49. 49.
    Tokuda, J., Fischer, G.S., DiMaio, S.P., Gobbi, D.G., Csoma, C., Mewes, P.W., Fichtinger, G., Tempany, C.M., Hata, N.: Integrated navigation and control software system for MRI-guided robotic prostate interventions. Computerized Medical Imaging and Graphics 34(1), 3 (2010)CrossRefGoogle Scholar
  50. 50.
    Tsekos, N.V., Khanicheh, A., Christoforou, E., Mavroidis, C.: Magnetic resonance-compatible robotic and mechatronics systems for image-guided interventions and rehabilitation: a review study. Annu. Rev. Biomed. Eng. 9, 351–387 (2007)CrossRefGoogle Scholar
  51. 51.
    Wallner, K., Blasko, J., Dattoli, M.: Prostate Brachytherapy Made Complicated, 2nd edn. Smart Medicine Press (2001)Google Scholar
  52. 52.
    Wang, Y., Cole, G., Su, H., Pilitsis, J., Fischer, G.: MRI compatibility evaluation of a piezoelectric actuator system for a neural interventional robot. In: Annual Conference of IEEE Engineering in Medicine and Biology Society, Minneapolis, MN, pp. 6072–6075 (2009)Google Scholar
  53. 53.
    Wang, Y., Su, H., Harrington, K., Fischer, G.: Sliding mode control of piezoelectric valve regulated pneumatic actuator for MRI-compatible robotic intervention. In: ASME Dynamic Systems and Control Conference - DSCC 2010, Cambridge, Massachusetts, USA (2010)Google Scholar
  54. 54.
    Webster I, R.J., Kim, J.S., Cowan, N., Chirikjian, G., Okamura, A.: Nonholonomic modeling of needle steering. International Journal of Robotics Research 25(5-6), 509–525 (2006)CrossRefGoogle Scholar
  55. 55.
    Yang, B., Tan, U., Gullapalli, R., McMillan, A., Desai, J.: Design and implementation of a pneumatically-actuated robot for breast biopsy under continuous MRI. In: IEEE ICRA 2011 International Conference on Robotics and Automation, Shanghai, China (2011)Google Scholar
  56. 56.
    Yeniaras, E., Lamaury, J., Hedayati, Y., Sternberg, N.V., Tsekos, N.V.: Prototype cyber-physical system for magnetic resonance based, robot assisted minimally invasive intracardiac surgeries. International Journal of Computer Assisted Radiology and Surgery (2011)Google Scholar

Copyright information

© IFIP 2012

Authors and Affiliations

  • Hao Su
    • 1
  • Gregory A. Cole
    • 1
  • Gregory S. Fischer
    • 1
  1. 1.Automation and Interventional Medicine (AIM) Laboratory, Department of Mechanical EngineeringWorcester Polytechnic InstituteWorcesterUSA

Personalised recommendations