Advertisement

Hot Electron Energy and Momentum Relaxation

  • Naci Balkan
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 150)

Abstract

This chapter reviews common techniques used to determine the energy and momentum relaxation rates of hot carriers in semiconductors where the carrier heating is achieved by either the application of an electrical field or optical excitation. Steady-state spectral techniques aim at determining the carrier temperature as a function of the optical or electrical power. Transient measurements provide the relaxation rates via probing the time evolution of the hot carrier population.

Keywords

Applied Electric Field Acoustic Phonon Lattice Temperature Multiple Quantum Well Electron Drift Velocity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

I am grateful to my students, Y. Sun, R. J. Potter, D. Zanato, and M. Vaughan, and to my colleagues, B. K. Ridley, A. Erol, M. C. Arikan, H. Celik, M. Cankurtaran, and E. Tiras, for many useful discussions and for the fruitful collaboration in hot electron research over the last 25 years.

References

  1. 1.
    B.K. Ridley, Rep. Prog. Phys. 54, 169 (1991)Google Scholar
  2. 2.
    B.K. Ridley, in Hot Electrons in Semiconductors, ed. by N. Balkan (Oxford University Press, New York, 1998), pp. 3–13Google Scholar
  3. 3.
    G. Weber, A.M. Depaula, J.F. Ryan, Semicond. Sci.Technol. 6, pp 397–400 (1991)Google Scholar
  4. 4.
    For a review see Hot Carriers in Semiconductor Nanostructures, ed. by J. Shah (Academic, New York, 1992)Google Scholar
  5. 5.
    N. Balkan, B.K. Ridley, M. Emeny, I. Goodridge, Semicond. Sci. Technol. 4, 852–857 (1989)Google Scholar
  6. 6.
    J.A. Kash, J.C. Tsang, J.M. Hvam, Phys. Rev. Lett. 54, 2151–2154 (1985)Google Scholar
  7. 7.
    J.A. Kash, S.S. Shah, J.C. Tsang, Phys. Rev. Lett. 58, 1869–1872 (1987)Google Scholar
  8. 8.
    M.C. Tatham, J.F. Ryan, C.T. Foxon, Surf. Sci. 228, 127–130 (1990)Google Scholar
  9. 9.
    M. Ramonas, A. Matulionis, J. Liberis, L. Eastman, X. Chen, Y.-J. Sun, Phys. Rev. B 71, 075324 (2005)Google Scholar
  10. 10.
    A. Matulionis, J. Liberis, I. Matulionien, M. Ramonas, L.F. Eastman, J.R. Shealy, V. Tilak, A. Vertiatchikh, Phys. Rev. B 68, 035338 (2003)Google Scholar
  11. 11.
    A.J. Kent, in Hot Electrons in Semiconductors: Physis and Devices, ed. by N. Balkan (Oxford University Press, Oxford, 1997)Google Scholar
  12. 12.
    H. Celik, M. Cankurtaran, N. Balkan, A. Bayrakli, Semicond. Sci. Technol. 17, 18–29 (2002)Google Scholar
  13. 13.
    D. Zanato, N. Balkan, B.K. Ridley, G. Hill, W.J. Schaff, Semicond. Sci. Technol. 19, 1024–1028 (2004)Google Scholar
  14. 14.
    S. Lyon, J. Lumin. 35, 121 (1986)Google Scholar
  15. 15.
    R.G. van Welzenis, H. Wifshoff, K. Ploog, Physica B 134, 347 (1985)Google Scholar
  16. 16.
    E.F. Schubert, K. Ploog, H. Dambkes, K. Heime, Appl. Phys. A 33, 63 (1984)Google Scholar
  17. 17.
    J. Shah, A. Pinczuk, H.L. Stormer, A.C. Gossard, W. Wiegmann, Appl. Phys. Lett. 42, 55 (1983)Google Scholar
  18. 18.
    R. Gupta, B.K. Ridley, Solid-State Electron.32, 1241 (1989)Google Scholar
  19. 19.
    R. Gupta, N. Balkan, B.K. Ridley, Semicond. Sci. Technol. 7, 8274–6278 (1992)Google Scholar
  20. 20.
    Y. Sun, M. Vaughan, A. Agarwal, M. Yilmaz, B. Ulug, A. Ulug, N. Balkan, M. Sopanen, O. Reentilä, M. Mattila, C. Fontaine, A. Arnoult, Phys. Rev. B 75, 205316 (2007)Google Scholar
  21. 21.
    Y. Sun, N. Balkan, J. Appl. Phys. 106, 073704 (2009)Google Scholar
  22. 22.
    B.K. Ridley, Semicond. Sci. Technol. 4, 142 (1989)Google Scholar
  23. 23.
    N. Balkan, R. Gupta, M.E. Daniels, B.K. Ridley, M. Emeny, Semicond. Sci. Technol. 5, 986 (1990)Google Scholar
  24. 24.
    R. Gupta, B.K. Ridley, Proc. SPIE 1362, 790 (1990)Google Scholar
  25. 25.
    R.J. Potter, N. Balkan, J. Phys.: Condens. Matter 16, 3387–3412 (2004)Google Scholar
  26. 26.
    B.K. Ridley, W.J. Schaff, L.F. Eastman, J. Appl. Phys. 96(3), 1499 (2004)Google Scholar
  27. 27.
    S. Chung, N. Balkan, J. Appl. Phys. 104, 073101 (2008)Google Scholar
  28. 28.
    R.J. Potter, N. Balkan, J. Phys.: Condens. Matter 16, 3387 (2004)Google Scholar
  29. 29.
    Y. Sun, M. Vaughan, A. Agarwal, M. Yilmaz, B. Ulug, A. Ulug, N. Balkan, M. Sopanen, O. Reentilä, M. Mattila, C. Fontaine, A. Arnoult, Phys. Rev. B 75, 205316 (2007)Google Scholar
  30. 30.
    B.K. Ridley, Quantum Process in Semiconductors, 4th edn. (Clarendon, Oxford, 1999)Google Scholar
  31. 31.
    W. Shan, W. Walukiewicz, J.W. Ager III, E.E. Haller, J.F. Geisz, D.J. Friedman, J.M. Olson, S.R. Kurtz, Phys. Rev. Lett. 82, 1221 (1999)Google Scholar
  32. 32.
    S. Fahy, E.P. O’Reilly, Appl. Phys. Lett. 83, 3732 (2003)Google Scholar
  33. 33.
    I. Vurgaftman, J.R. Meyer, L.R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001)Google Scholar
  34. 34.
    N. Balkan, H. Çelik, A.J. Vickers, M. Cankurtaran, Phys. Rev. B 52, 17210 (1995)Google Scholar
  35. 35.
    J. Shah, A. Pinczuk, H.L. Störmer, A.C. Gossard, W. Wiegmann, Appl. Phys. Lett. 44, 322 (1984)Google Scholar
  36. 36.
    C.H. Yang, J.M. Carlson-Swindle, S.A. Lyon, J.M. Worlock, Phys. Rev. Lett. 55, 2359 (1985)Google Scholar
  37. 37.
    P. Hawker, A.J. Kent, O.H. Hughes, L.J. Challis, Semicond. Sci. Technol. 7B, 29 (1992)Google Scholar
  38. 38.
    B.N. Murdin, W. Heiss, C.J.G.M. Langerak, S.-C. Lee, I. Galbraith, G. Strasser, E. Gornik, M. Helm, C.R. Pidgeon, Phys. Rev. B 55, 5171 (1997)Google Scholar
  39. 39.
    K.M. Wennberg, S.N. Ytterboe, C.M. Gould, H.M. Bozler, J. Klem, H. Morkoç, Phys. Rev. B 34, 4409 (1986)Google Scholar
  40. 40.
    K. Hirakawa, H. Sakaki, Appl. Phys. Lett. 49, 889 (1986)Google Scholar
  41. 41.
    M.G. Blyumina, A.G. Denisov, T.A. Polyanskaya, I.G. Savel’ev, A.P. Senichkin, Yu V. Shmartsev, JETP Lett. 44, 331 (1986)Google Scholar
  42. 42.
    S.J. Manion, M. Artaki, M.A. Emanuel, J.J. Coleman, K. Hess, Phys. Rev. B 35, 9203 (1987)Google Scholar
  43. 43.
    M.J. Barlow, B.K. Ridley, M.J. Kane, S.J. Bass, Solid State Electron. 31, 501 (1988)Google Scholar
  44. 44.
    A.M. Kreshchuk, M.Yu Martisov, T.A. Polyanskaya, I.G. Savel’ev, I.I. Saidashev, A.Ya Shik, Yu V. Shmartsev, Sov. Phys. Semicond. 22, 377 (1988)Google Scholar
  45. 45.
    M.E. Daniels, B.K. Ridley, M. Emeny, Solid State Electron. 32, 1207 (1989)Google Scholar
  46. 46.
    A. Straw, A.J. Vickers, J.S. Roberts, Solid State Electron. 32, 1539 (1989)Google Scholar
  47. 47.
    D.R. Leadley, R.J. Nicholas, J.J. Harris, C.T. Foxon, Semicond. Sci. Technol. 4, 879 (1989)Google Scholar
  48. 48.
    Y. Ma, R. Fletcher, E. Zaremba, M. D’Iorio, C.T. Foxon, J.J. Harris, Phys. Rev. B 43, 9033 (1991)Google Scholar
  49. 49.
    R. Fletcher, J.J. Harris, C.T. Foxon, R. Stoner, Phys. Rev. B 45, 6659 (1992)Google Scholar
  50. 50.
    K. Hirakawa, M. Grayson, D.C. Tsui, Ç. Kurdak, Phys. Rev. B 47, 16651 (1993)Google Scholar
  51. 51.
    A.M. Kreshchuk, S.V. Novikov, I.G. Savel’ev, T.A. Polyanskaya, B. Pödör, G. Remenyi, Gy Kovacs, Act. Phys. Pol. A 94, 415 (1998)Google Scholar
  52. 52.
    E. Tiras, M. Cankurtaran, H. Çelik, N. Balkan, Phys. Rev. B 64, 085301 (2001)Google Scholar
  53. 53.
    A.J. Vickers, Phys. Rev. B 46, 3315 (1992)Google Scholar
  54. 54.
    A. Straw, A.J. Vickers, N. Balkan, J.S. Robert, Superlatt. Microstruct. 10, 203 (1991)Google Scholar
  55. 55.
    E. Tiras, M. Cankurtaran, H. Çelik, A. Boland Thoms, N. Balkan, Superlatt. Microstruct. 29, 147 (2001)Google Scholar
  56. 56.
    M. Cankurtaran, H. Çelik, E. Tiras, A. Bayrakli, N. Balkan, Phys. Status Solidi B 207, 139 (1998)Google Scholar
  57. 57.
    H. Çelik, M. Cankurtaran, A. Bayrakli, E. Tiras, N. Balkan, Semicond. Sci. Technol. 12, 389 (1997)Google Scholar
  58. 58.
    E. Tiras, N. Balkan, S. Ardali, M. Gunes, C. Fontaine, A. Arnoult, Philos. Mag. 91(4), 628 (2011)Google Scholar
  59. 59.
    S.B. Lisesivdin, N. Balkan, O. Makarovsky, A. Patane, A. Yildiz, M.D. Caliskan, M. Kasap, S. Ozcelik, E. Ozbay, J. Appl. Phys. 105(9), Article Number 093701 (2009)Google Scholar
  60. 60.
    S. Das Sarma, J.K. Jain, R. Jalabert, Phys. Rev. B 37, 6290 (1988)Google Scholar
  61. 61.
    M. Kogan Sh, Sov. Phys. Solid State 4, 1813 (1963)Google Scholar
  62. 62.
    B.K. Ridley, Electrons and Phonons in Semiconductor Multilayers (Cambridge University Press, New York, 1997)Google Scholar
  63. 63.
    V. Karpus, Sov. Phys. Semicond. 22, 268 (1988)Google Scholar
  64. 64.
    Y. Okuyama, N. Tokuda, Phys. Rev. B 40, 9744 (1989)Google Scholar
  65. 65.
    P.K. Milsom, P.N. Butcher, Semicond. Sci. Technol. 1, 58 (1986)Google Scholar
  66. 66.
    P.J. Price, J. Appl. Phys. 53, 6863 (1982)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.School of Computer Science and Electronic EngineeringUniversity of EssexEssexUK

Personalised recommendations