Photoconductivity and Transient Spectroscopy

Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 150)

Abstract

This chapter focuses on photoconductivity (PC) and transient spectroscopy techniques including photo-induced transient spectroscopy (PITS) and deep-level transient spectroscopy (DLTS). Spectral photoconductivity provides a powerful tool for measuring the band-gap energy and optical transitions in semiconductors. On the other hand, transient photoconductivity can be used to determine the time constants associated with specific recombination processes. PITS and DLTS are extensively used to characterize deep energy levels due to traps. The aim of this chapter is to discuss the fundamentals of these measurement techniques and describe typical experimental setups and methods of analysis for the determination of important trap parameters, such as the activation energy, the carrier capture cross-section, and the trap density.

Keywords

Depletion Layer Excess Carrier Rate Window Photoconductivity Measurement Capacitance Transient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    W. Smith, Effect of light on selenium during the passage of an electric current. Nature7, 303 (1873)Google Scholar
  2. 2.
    R.W. Pohl, Electron conductivity and photochemical processes in alkali-halide crystals. Proc. Phys. Soc. 49, 3 (1937)ADSCrossRefGoogle Scholar
  3. 3.
    A.L. Huges, Photoconductivity in crystals. Rev. Mod. Phys. 8, 294 (1936)CrossRefGoogle Scholar
  4. 4.
    N.F. Mott, R.W. Gurney, Electronic Processes in Ionic Crystals (Oxford University Press, Oxford, 1940)MATHGoogle Scholar
  5. 5.
    T.S. Moss, Photoconductivity in the elements. Proc. Phys. Soc. A64, 590 (1951)ADSCrossRefGoogle Scholar
  6. 6.
    H. Bube, Photoelectronic Properties of Semiconductors (Cambridge University Press, Cambridge 1992) ISBN 0521 40491 6Google Scholar
  7. 7.
    M. Fox, Optical Properties of Solids (Oxford University Press, Oxford, 2001) ISBN: 0 19 850613 9Google Scholar
  8. 8.
    J. Wilson, J.F.B. Hawkes, Optoelectronics:An Introduction, 2nd edn. (Prentice Hall, Upper Saddle River, 1989) ISBN: 0136384617Google Scholar
  9. 9.
    S.L. Chuang, Physics of Optoelectronic Devices (Wiley, New York, 1995) ISBN: 0-471-10939-8Google Scholar
  10. 10.
    J.R. Hook, H.E. Hall, Solid State Physics, 2nd edn. (Wiley, England, 1991) ISBN: 0 471 928046Google Scholar
  11. 11.
    D.A. Neamen, Semiconductor Physics and Devices, 3rd edn. (McGraw Hill Higher Education, New York, 2003) ISBN: 0-07-232107-5Google Scholar
  12. 12.
    R.H. Bube, Photoconductivity of Solids (Wiley, New York, 1960)MATHGoogle Scholar
  13. 13.
    R.A. Smith (ed.), Semiconductors, 2nd edn. (Cambridge University Press, Cambridge, UK,. 1978) ISBN: 0521293146Google Scholar
  14. 14.
    M.Ç. Arikan, An Experimental Investigation of Photoconductivity in GaAs, PhD Thesis, Essex University, UK, 1980Google Scholar
  15. 15.
    M.Ç. Arikan, Y. Ergün, N. Balkan, B.K. Ridley, In-plane photoconductive properties of MBE-grown GaAs/GaAlAs multiple quantum wells. Semicond. Sci. Technol. 8, 1337 (1999)ADSCrossRefGoogle Scholar
  16. 16.
    A. Erol, N. Akçay, M.Ç. Arikan, S. Mazzucato, N. Balkan, Spectral photoconductivity and in-plane photovoltage studies of as-grown and annealed GaInNAs/GaAs and GaInN/GaAs quantum well structures. Semicond. Sci. Technol. 19, 1086 (2004)ADSCrossRefGoogle Scholar
  17. 17.
    S. Mazzucato, A. Boland-Thoms, A. Erol, N. Balkan, Transient photoconductivity and in-plane photovoltage studies in GaInNAs/GaAs quantum wells. Phys. Scripta T114, 236 (2004)ADSCrossRefGoogle Scholar
  18. 18.
    A.G. Milnes, Deep Impurities in Semiconductors (Wiley, New York, 1973) ISBN: 0-471-60670-7Google Scholar
  19. 19.
    U.K. Mishra, J. Singh, Semiconductor Device Physics and Design (Springer, The Netherlands, 2008) ISBN: 978 1-4010-6480-7Google Scholar
  20. 20.
    D.K. Schroder, Semiconductor Material and Device Characterization, 3rd edn. (Wiley, Canada, 2006) ISBN: 978-0-471-73-906-7Google Scholar
  21. 21.
    E.A. Irene, Electronic Materials Science (Wiley, New York, 2005) ISBN 9780471695974Google Scholar
  22. 22.
    E.R. Weber (ed.), Imperfections in III/V materials, Semiconductors and Semimetals 38, (Academic, New York, 1993) ISBN: 0-12-752138-0Google Scholar
  23. 23.
    R.E. Kremer, M.Ç. Arikan, J.C. Abele, J.S. Blakemore, Transient photoconductivity measurements in semi-insulating GaAs. I. An analogy. J. Appl. Phys. 62, 2424 (1987)ADSGoogle Scholar
  24. 24.
    A. Erol, S. Mazzucato, M.Ç. Arikan, H. Carrere, A. Arnoult, E. Bedel, N. Balkan, Photo-induced transient spectroscopy of defect levels in GaInNAs. Semicond. Sci. Technol. 18, 968 (2003)ADSCrossRefGoogle Scholar
  25. 25.
    J.P. Zielinger, M. Tapiero, Assessment of deep levels in photorefractive materials by transient photoelectric methods. J. Phys. III France 3, 1327 (1993)CrossRefGoogle Scholar
  26. 26.
    M.Ç. Arikan, S. Cenk, N. Balkan, Photo-induced transient spectroscopy of deep levels in \({\mathrm{GaAs/Ga}}_{1-x}{\mathrm{Al}}_{x}\mathrm{As}\) multiple quantum wells. J. Appl. Phys. 82, 4986 (1997)ADSCrossRefGoogle Scholar
  27. 27.
    D.V. Lang, Deep-level transient spectroscopy: A new method to characterize traps in semiconductors. J. Appl. Phys. 45, 3023 (1974)ADSCrossRefGoogle Scholar
  28. 28.
    D.V. Lang, Recalling the origins of DLTS. Physica B 401–402, 7 (2007)CrossRefGoogle Scholar
  29. 29.
    A.A. Garcia, M.A.R. Baranca, Computerized DLTS system to characterize deep levels in semiconductors. Revista Mexiana De Fisica 48, 539 (2002)ADSGoogle Scholar
  30. 30.
    P.T. Devries, A.A. Khan, An efficient technique for analyzing deep level transient spectroscopy data. J. Elect. Mater. 18, 543 (1989)ADSCrossRefGoogle Scholar
  31. 31.
    D.V. Lang, L.C. Kimerling, Observation of recombination-enhanced defect reactions in semiconductors. Phys. Rev. Lett. 33, 489 (1974)ADSCrossRefGoogle Scholar
  32. 32.
    V.T.R. Kuoppa, Electrical characterization of Nitrogen containing III-V semiconductors. (Doctoral Dissertation TKK Dissertations 62, Helsinki University of Technology, Finland, 2007)Google Scholar
  33. 33.
    A. Dast, V.A. Singht, D.V. Lang, Deep-level transient spectroscopy (DLTS) analysis of defect levels in semiconductor alloys. Semicond. Sci. Technol. 3, 1177 (1988)ADSCrossRefGoogle Scholar
  34. 34.
    L.F. Makarenko, J.H. Evans-Freeman, Application of DLTS and Laplace-DLTS to defect characterization in high-resistivity semiconductors. Phys. B: Condens. Matter 401–402, 666–669 (2007)CrossRefGoogle Scholar
  35. 35.
    S. Weiss, R. Kassing, Deep Level Transient Fourier Spectroscopy (DLTFS)—A technique for the analysis of deep level properties. Solid-State Electron. 31, 1733–1742 (1988)ADSCrossRefGoogle Scholar
  36. 36.
    A. Blondeel, P. Clauws, Quantitative optical variants of deep level transient spectroscopy: application to high purity germanium. Mater. Sci. Eng. B 71, 233–237 (2000)CrossRefGoogle Scholar
  37. 37.
    M.D. Jack, R.C. Pack, J. Henriksen, A computer-controlled deep-level transient spectroscopy system for semiconductor process control. Electron Dev. IEEE Trans. 27, 2226–2231 (1980)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Science Faculty, Department of PhysicsIstanbul UniversityVezneciler, IstanbulTurkey

Personalised recommendations