Skip to main content

A possible route to the quantification of piezoresponse force microscopy through correlation with electron backscatter diffraction

  • Chapter
  • First Online:
Book cover Materials Challenges and Testing for Supply of Energy and Resources

Abstract

The functional properties of ferroelectric ceramic bulk or thin film materials are strongly influenced by their nano-structure, crystallographic orientation and structural geometry. In this paper, we present a possible route to quantification of piezoresponse force microscopy (PFM) by combining it with textural analysis, through electron back-scattered diffraction (EBSD). Quantitative measurements of the piezoelectric properties can be made at a scale of 25 nm, smaller than the domain size. The combined technique is used to resolve the effective single crystal piezoelectric response of individual crystallites in polycrystalline lead zirconate titanate (PZT). The piezoresponse results are quantified via two methods and these are compared to the piezoresponse predicted by a model. The results are encouraging for the quantification of the PFM technique and promote it as a tool for the future development of new nano-structured ferroelectric materials such as memory, nano-actuators and sensors. Knowledge of the orientation at the nanoscale allows for a method of quantification of the PFM signals and is being pursued as one method with which to potentially provide standards for PFM. This pre-standards work continues under a new VAMAS (Versailles Project on Advanced Materials and Standards) initiative. Standardization will provide a way to meaningfully compare values recorded with the PFM technique, which has become an important tool in the characterization of piezoelectric and ferroelectric materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1] Guthner P., Dransfield K., Appl. Phys. Lett, 61, 9, 1137 (1992).

    Google Scholar 

  2. 2] Chu Y. H et al, Appl. Phys. Lett, 90, 252906 (2007)

    Article  Google Scholar 

  3. 3] Nath R. et al, Appl. Phys. Lett, 93, 072905 (2008)

    Article  Google Scholar 

  4. 4] Kalinin, S. V., Rar, A., Jesse, S., A Decade of Piezoresponse Force Microscopy: Progress, Challenges and Opportunities. Arxiv preprint cond-mat/0509009, (2005)

    Google Scholar 

  5. 5] Kholkin A., Kalinin S. V., Roelofs A., Gruverman A., Scanning probe microscopy: electrical and electromechanical phenomena at the nanoscale, Springer Science + Business Media, New York (2007)

    Google Scholar 

  6. 6] Alexe M., Gruverman A. (Eds), Nanoscale characterisation of ferroelectric material-Scanning probe microscopy approach, Springer, Berlin (2004)

    Google Scholar 

  7. 7] Kan Y., Lu X., Wu X., Zhu J., App. Phys. Lett, 89, 262907 (2006)

    Article  Google Scholar 

  8. 8] Kim Y., Alexe M., Salje E., Appl. Phys. Lett. 96, 032904 (2010)

    Article  Google Scholar 

  9. 9] Jungk T., Hoffman A., Soergel E., Appl. Phys. Lett. 89, 163507 (2006)

    Article  Google Scholar 

  10. 10] Harnagea C., Pignolet A., Alexe M., Hesse D., Integrated Ferroelectrics, 44, pp. 113–124 (2002)

    Google Scholar 

  11. 11] Gruverman, A., Kalinin, S. V., J. Materials Science 41, 107–116 (2006)

    Article  CAS  Google Scholar 

  12. 12] Peter F., Rüdiger A., Dittman R., Waser R., Szot K., Reichenberg B., Prume K., Appl. Phys. Lett. 87, 082901 (2005)

    Article  Google Scholar 

  13. 13] Felten, F., Schneider, G. A., Munoz Saldana, J., Kalinin, S. V. J. Appl. Phys. 96 (1), 563–568 (2004)

    CAS  Google Scholar 

  14. 14] Tian L., Vasudevarao A., Morozovska A. N., Eliseev E. A., Kalinin S. V., Gopalan V., J. Appl. Phys. 104, 074110 (2008)

    Article  Google Scholar 

  15. 15] Kalinin, S. V., Gruverman, A., Bonnell, D. A., Appl. Phys. Lett. 85 (5), 795–797 (2004)

    Article  CAS  Google Scholar 

  16. 16] Lin, H-N., Chen, S-H., Ho, S-T., Chen, P-R., Lin, I-N., J. Vac. Sci. Technol. B 21 (2), 916–918 (2003)

    Google Scholar 

  17. 17] Wu, A, Vilarinho, P. M., Shvartsman, V. V., Suchaneck, G, Kholkin, A. L., Nanotechnology 16, 2587–2595 (2005)

    Google Scholar 

  18. 18] Randle V., Engler O., Texture Analysis, Macrotexture, Microtexture and Orientation Mapping, Gordon and Breach science publishers, (2000)

    Google Scholar 

  19. 19] Humphreys F. J., J. Materials Science, 36, 3833–3854, (2001)

    Article  CAS  Google Scholar 

  20. 20] Burnett, T. L., Comyn, T. P., Merson E., Bell, A. J., Mingard, K., Hegarty, T., Cain, M. G., IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control 55 (5) 957–962, (2008)

    Article  CAS  Google Scholar 

  21. 21] Gupta P., Jain H., Williams D. B., Kalinin S. V., Shin J., Jesse, S., Baddorf, A. P., Appl. Phys. Lett. 87, 172903, (2005)

    Google Scholar 

  22. 22] Yang B., Park, N. J., Seo B. I., Oh, Y. H., Kim, S. J., Hong, S. K., Lee, S. S., Park, Y. J., Appl. Phys. Lett. 87, 062902, (2005)

    Google Scholar 

  23. 23] Lowe M., Hegarty T., Mingard K., Li J., Cain M., Journal of Physics: Conference Series, 126, 012011, (2008)

    Google Scholar 

  24. 24] Garcia R. E., Huey B. D., Blendell J. E., J. of Appl. Phys. 100, 064105, (2006)

    Google Scholar 

  25. 25] Farooq M. U., Villaurrutia R., MacLaren I., Kungl H., Hoffman M. J., Fundenberger J. J., Bouzy E., J. of Microscopy, 230, 445–454, (2008)

    Google Scholar 

  26. 26] Farooq, M. U., Villaurrutia, R., MacLaren, I., Burnett, T. L., Comyn, T. P., Bell A. J., Kungl, H., Hoffmann, M. J., J. Appl. Phys., 104, 024111 (2008)

    Article  Google Scholar 

  27. 26] Johann F., Hoffman A., Soergel E., Phys. Rev. B, 81, 094109 (2010)

    Article  Google Scholar 

  28. 27] Jungk, T., Hoffmann A., Soergel, E. Appl. Phys. Lett. 91, 253511 (2007)

    Article  Google Scholar 

  29. 28] Haun, M. J., Furman, E., Halemane, T. R., Cross, L. E., Ferroelectrics, 99, 63–86, (1989)

    Google Scholar 

  30. 105

    Google Scholar 

  31. 31] Shin J et al, Nano Lett. 9, 3720–3725 (2009)

    Article  CAS  Google Scholar 

  32. 33] Johann, F., Ying, Y. J., Jungk, T., Hoffmann, A., Sones, C. L., Eason, R. W., Mailis, S., Soergel, E., Appl. Phys. Lett. 94, 172904, (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Burnett, T.L., Weaver, P.M., Blackburn, J.F., Stewart, M., Cain, M.G. (2012). A possible route to the quantification of piezoresponse force microscopy through correlation with electron backscatter diffraction. In: Böllinghaus, T., Lexow, J., Kishi, T., Kitagawa, M. (eds) Materials Challenges and Testing for Supply of Energy and Resources. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23348-7_9

Download citation

Publish with us

Policies and ethics