Advertisement

A possible route to the quantification of piezoresponse force microscopy through correlation with electron backscatter diffraction

  • T. L. Burnett
  • P. M. Weaver
  • J. F. Blackburn
  • M. Stewart
  • M. G. Cain
Chapter

Abstract

The functional properties of ferroelectric ceramic bulk or thin film materials are strongly influenced by their nano-structure, crystallographic orientation and structural geometry. In this paper, we present a possible route to quantification of piezoresponse force microscopy (PFM) by combining it with textural analysis, through electron back-scattered diffraction (EBSD). Quantitative measurements of the piezoelectric properties can be made at a scale of 25 nm, smaller than the domain size. The combined technique is used to resolve the effective single crystal piezoelectric response of individual crystallites in polycrystalline lead zirconate titanate (PZT). The piezoresponse results are quantified via two methods and these are compared to the piezoresponse predicted by a model. The results are encouraging for the quantification of the PFM technique and promote it as a tool for the future development of new nano-structured ferroelectric materials such as memory, nano-actuators and sensors. Knowledge of the orientation at the nanoscale allows for a method of quantification of the PFM signals and is being pursued as one method with which to potentially provide standards for PFM. This pre-standards work continues under a new VAMAS (Versailles Project on Advanced Materials and Standards) initiative. Standardization will provide a way to meaningfully compare values recorded with the PFM technique, which has become an important tool in the characterization of piezoelectric and ferroelectric materials.

Keywords

Piezoelectric Property Piezoelectric Coefficient Piezoresponse Force Microscopy EBSD Measurement Kikuchi Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    1] Guthner P., Dransfield K., Appl. Phys. Lett, 61, 9, 1137 (1992).Google Scholar
  2. 2.
    2] Chu Y. H et al, Appl. Phys. Lett, 90, 252906 (2007)CrossRefGoogle Scholar
  3. 3.
    3] Nath R. et al, Appl. Phys. Lett, 93, 072905 (2008)CrossRefGoogle Scholar
  4. 4.
    4] Kalinin, S. V., Rar, A., Jesse, S., A Decade of Piezoresponse Force Microscopy: Progress, Challenges and Opportunities. Arxiv preprint cond-mat/0509009, (2005)Google Scholar
  5. 5.
    5] Kholkin A., Kalinin S. V., Roelofs A., Gruverman A., Scanning probe microscopy: electrical and electromechanical phenomena at the nanoscale, Springer Science + Business Media, New York (2007)Google Scholar
  6. 6.
    6] Alexe M., Gruverman A. (Eds), Nanoscale characterisation of ferroelectric material-Scanning probe microscopy approach, Springer, Berlin (2004)Google Scholar
  7. 7.
    7] Kan Y., Lu X., Wu X., Zhu J., App. Phys. Lett, 89, 262907 (2006)CrossRefGoogle Scholar
  8. 8.
    8] Kim Y., Alexe M., Salje E., Appl. Phys. Lett. 96, 032904 (2010)CrossRefGoogle Scholar
  9. 9.
    9] Jungk T., Hoffman A., Soergel E., Appl. Phys. Lett. 89, 163507 (2006)CrossRefGoogle Scholar
  10. 10.
    10] Harnagea C., Pignolet A., Alexe M., Hesse D., Integrated Ferroelectrics, 44, pp. 113–124 (2002)Google Scholar
  11. 11.
    11] Gruverman, A., Kalinin, S. V., J. Materials Science 41, 107–116 (2006)CrossRefGoogle Scholar
  12. 12.
    12] Peter F., Rüdiger A., Dittman R., Waser R., Szot K., Reichenberg B., Prume K., Appl. Phys. Lett. 87, 082901 (2005)CrossRefGoogle Scholar
  13. 13.
    13] Felten, F., Schneider, G. A., Munoz Saldana, J., Kalinin, S. V. J. Appl. Phys. 96 (1), 563–568 (2004)Google Scholar
  14. 14.
    14] Tian L., Vasudevarao A., Morozovska A. N., Eliseev E. A., Kalinin S. V., Gopalan V., J. Appl. Phys. 104, 074110 (2008)CrossRefGoogle Scholar
  15. 15.
    15] Kalinin, S. V., Gruverman, A., Bonnell, D. A., Appl. Phys. Lett. 85 (5), 795–797 (2004)CrossRefGoogle Scholar
  16. 16.
    16] Lin, H-N., Chen, S-H., Ho, S-T., Chen, P-R., Lin, I-N., J. Vac. Sci. Technol. B 21 (2), 916–918 (2003)Google Scholar
  17. 17.
    17] Wu, A, Vilarinho, P. M., Shvartsman, V. V., Suchaneck, G, Kholkin, A. L., Nanotechnology 16, 2587–2595 (2005)Google Scholar
  18. 18.
    18] Randle V., Engler O., Texture Analysis, Macrotexture, Microtexture and Orientation Mapping, Gordon and Breach science publishers, (2000)Google Scholar
  19. 19.
    19] Humphreys F. J., J. Materials Science, 36, 3833–3854, (2001)CrossRefGoogle Scholar
  20. 20.
    20] Burnett, T. L., Comyn, T. P., Merson E., Bell, A. J., Mingard, K., Hegarty, T., Cain, M. G., IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control 55 (5) 957–962, (2008)CrossRefGoogle Scholar
  21. 21.
    21] Gupta P., Jain H., Williams D. B., Kalinin S. V., Shin J., Jesse, S., Baddorf, A. P., Appl. Phys. Lett. 87, 172903, (2005)Google Scholar
  22. 22.
    22] Yang B., Park, N. J., Seo B. I., Oh, Y. H., Kim, S. J., Hong, S. K., Lee, S. S., Park, Y. J., Appl. Phys. Lett. 87, 062902, (2005)Google Scholar
  23. 23.
    23] Lowe M., Hegarty T., Mingard K., Li J., Cain M., Journal of Physics: Conference Series, 126, 012011, (2008)Google Scholar
  24. 24.
    24] Garcia R. E., Huey B. D., Blendell J. E., J. of Appl. Phys. 100, 064105, (2006)Google Scholar
  25. 25.
    25] Farooq M. U., Villaurrutia R., MacLaren I., Kungl H., Hoffman M. J., Fundenberger J. J., Bouzy E., J. of Microscopy, 230, 445–454, (2008)Google Scholar
  26. 26.
    26] Farooq, M. U., Villaurrutia, R., MacLaren, I., Burnett, T. L., Comyn, T. P., Bell A. J., Kungl, H., Hoffmann, M. J., J. Appl. Phys., 104, 024111 (2008)CrossRefGoogle Scholar
  27. 26.
    26] Johann F., Hoffman A., Soergel E., Phys. Rev. B, 81, 094109 (2010)CrossRefGoogle Scholar
  28. 27.
    27] Jungk, T., Hoffmann A., Soergel, E. Appl. Phys. Lett. 91, 253511 (2007)CrossRefGoogle Scholar
  29. 28.
    28] Haun, M. J., Furman, E., Halemane, T. R., Cross, L. E., Ferroelectrics, 99, 63–86, (1989)Google Scholar
  30. 29.
  31. 30.
    31] Shin J et al, Nano Lett. 9, 3720–3725 (2009)CrossRefGoogle Scholar
  32. 31.
    33] Johann, F., Ying, Y. J., Jungk, T., Hoffmann, A., Sones, C. L., Eason, R. W., Mailis, S., Soergel, E., Appl. Phys. Lett. 94, 172904, (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • T. L. Burnett
    • 1
  • P. M. Weaver
    • 1
  • J. F. Blackburn
    • 1
  • M. Stewart
    • 1
  • M. G. Cain
    • 1
  1. 1.National Physical LaboratoryTeddingtonUK

Personalised recommendations