Employment of high Resolution RBS to characterize ultrathin transparent electrode in high efficiency GaN based Light Emitting Diode

  • Grace Huiqi Wang
  • Taw Kuei Chan


GaN based light emitting diodes (LEDs) have attracted significant attention for use in solid state lighting. The high efficiency of LEDs has provided substantial energy savings and environmental benefits in a number of applications. A thermally stable and highly transparent low resistivity electrode is important for the fabrication of high brightness LED. Technological advances in microelectronics, optoelectronics and photonics rely on the use of precisely manufactured thin film structures (<10nm) in the LED electrodes. Recent advent of nanotechnology demands the ability to fully and nondestructively characterize such films in the monolayer range. In this work, we present a new metallization scheme to reduce the contact resistance and enhance current injection into the LED for improved light extraction, using excimer laser irradiation. Various techniques, including Rutherford backscattering, transmission electron microscopy and UV-Vis spectroscopy techniques are used to study the contact properties of the thin film electrodes.


Rapid Thermal Annealing Rutherford Backscatter Spectrometry Laser Annealing Focal Plane Detector Excimer Laser Irradiation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, Jpn. J. Appl. Phys.,Part 2 34, L797 (1995).Google Scholar
  2. 2.
    T. Nishida, H. Saito, N. Kobayashi, Appl. Phys. Lett. 79, 711–712 (2001).CrossRefGoogle Scholar
  3. 3.
    S.J. Pearton, C.B. Vartuli, J.C. Zolper, C. Yuan, R.A. Stall, Appl. Phys. D.J. King, L. Zhang, J.C. Ramer, S.D. Hersee, L.F. Lester, Mater. Res. Soc. Symp. Proc. 468 (1997) 421.Google Scholar
  4. 4.
    T. Mori, T. Kozawa, T. Ohwaki, Y. Taga, S. Nagai, S. Yamasaki,S. Asami, N. Shibata, M. Koike, Appl. Phys. Lett. 69 (1996) 3537.CrossRefGoogle Scholar
  5. 5.
    T. Kim, J. Khim, S. Chae, T. Kim, Mater. Res. Soc. Symp. Proc. 468 (1997) 427.CrossRefGoogle Scholar
  6. 6.
    C.H. Kuo, S.J. Chang, Y.K. Su, L.W. Wu, J.F. Chen, J.K. Sheu, J.M.Tsai, Jpn. J. Appl. Phys. 42 (2003) 2270.CrossRefGoogle Scholar
  7. 7.
    C.H. Chen, S.J. Chang, Y.K. Su, Jpn. J. Appl. Phys. 42 (2003) 2281.CrossRefGoogle Scholar
  8. 8.
    R.C. Tu, C.J. Tun, S.M. Pan, H.P. Liu, C.E. Tsai, J.K. Sheu, C.C. ChuoGoogle Scholar
  9. 9.
    T.C. Wang, G.C. Chi, I.G. Chen, IEEE Photon. Technol. Lett. 15 (2003) 1050.CrossRefGoogle Scholar
  10. 10.
    Q.Z. Liu, S.S. Lau , Solid-State Electronics Vol. 42, No. 5, pp. 677–691, 1998CrossRefGoogle Scholar
  11. 11.
    S. H. Liu, J. M. Hwang, Z. H. Hwang, W. H. Hung, H. L. Hwang, Applied Surface Science, Volumes 212–213, Pages 907–911, 2003.Google Scholar
  12. 12.
    F.B. Naranjo, E. Calleja, Z. Bougrioua, A. Trampert, X. Kong, K.H. Ploog, Journal of Crystal Growth, Volume 270, Issues 3–4, Pages 542–546 , 2004.Google Scholar
  13. 13.
    G. C. Chi, C. H. Kuo, J. K. Sheu, C. J. Pan, Materials Science and Engineering B, Volume 75, Issues 2–3, Pages 210–213, 2000.Google Scholar
  14. 14.
    B. Schineller, A. Guttzeit, F. Vertommen, O. Schon, M. Heuken, K. Heime, R. Beccard , Journal of Crystal Growth, Volumes 189–190, Pages 798–802, 1998.Google Scholar
  15. 15.
    Jing-Bo Li, JingKui Liang, GuangHui Rao, Yi Zhang, GuangYao Liu, JingRan Chen, QuanLin Liu, WeiJing Zhang, Journal of Alloys and Compounds, Volume 422, Issues 1–2, Pages 279–282, 2006.Google Scholar
  16. 16.
    Heng-Kuang Lin, Hsiang-Lin Yu, Fan-Hsiu Huang, Solid-State Electronics, Volume 54, Issue 5, Pages 552–556, 2010. CrossRefGoogle Scholar
  17. 17.
    Wu-Yih Uen, Zhen-Yu Li, Shan-Ming Lan, Tsun-Neng Yang, Yen-Wen Chen, Sen-Mao Liao, Solid-State Electronics, Volume 51, Issue 3, Pages 460–465 ,2007.CrossRefGoogle Scholar
  18. 18.
    T. Sawada, Y. Izumi, N. Kimura, K. Suzuki, K. Imai, S. -W. Kim, T. Suzuki, “Applied Surface Science, Volume 216, Issues 1–4, Pages 192–197, 2003.Google Scholar
  19. 19.
    Jae Wook Kim, Jhang Woo Lee, Applied Surface Science, Volume 250, Issues 1–4, Pages 247–251, 2003. Google Scholar
  20. 20.
    Yasuo Koide, H. Ishikawa, S. Kobayashi, S. Yamasaki, S. Nagai, J. Umezaki, M. Koike, Masanori Murakami, Applied Surface Science, Volumes 117–118, Pages 373–379 ,1997.Google Scholar
  21. 21.
    T. Osipowicz, H.L. Seng, T.K. Chan, B. Ho, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Volume 249, Issues 1–2, Pages 915–917, 2006. Google Scholar
  22. 22.
    P Aloupogiannis, A Travlos, X Aslanoglou, M Pilakouta, G Weber , Vacuum, Volume 44, Issue 1,Pages 37–39 , 1993.CrossRefGoogle Scholar
  23. 23.
    Kenji Kimura, Kaoru Nakajima, Michi-hiko Mannami, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Volumes 136–138, Pages 1196–1202, 1998. Google Scholar
  24. 24.
    M. Mayer, SIMNRA User's Guide, Max-Plank-Institut Fur Plasmaphysik, Garching, Germany, 2006.Google Scholar
  25. 25.
    T.K. Chan, P. Darmawan, C.S. Ho, P. Malar, P.S. Lee, T. Osipowicz, Nuclear Instruments and Methods in Physics Research B 266 pp.1486, 2008.Google Scholar
  26. 26.
    P. Malar, T.K. Chan, C.S. Ho, T. Osipowicz, Nuclear Instruments and Methods in Physics Research B 266, pp. 1464, 2008.Google Scholar
  27. 27.
    Y. Yao, C. Jin, Z. Dong, Z. Sun, S.M. Huang, Displays, Volume 28, Issue 3, Pages 129–132 , 2007.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Grace Huiqi Wang
    • 1
  • Taw Kuei Chan
    • 2
  1. 1.Institute of Materials Research and Engineering (IMRE)SingaporeSingapore
  2. 2.Physics DepartmentNational University of Singapore (NUS)SingaporeSingapore

Personalised recommendations