Water overlayers on Cu(110) studied by van der Waals density functionals

  • Sheng Meng
Chapter

Abstract

We investigate water overlayer structures on a model open metal surface: Cu(110), employing recently developed van der Waals density functionals (vdW-DFs). Both intact and half-dissociated layers are considered. We found that all the three structures (H-up, H-down and half-dissociated layer) have very close adsorption energies (differences < 0.16 eV) in all density functionals used here (two GGAs and two vdW-DFs), implying they have similar wetting orders on this surface. More importantly, we found that a hybrid vdW-DF approach treating water-Cu interaction with PBE exchange and hydrogen bonds with revPBE exchange yields best results for explaining experimentally observed wetting behavior of water on Cu(110).

Keywords

Adsorption Energy Cohesive Energy Density Function Theory Large Adsorption Energy Model Open Metal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. 1.
    C. Callaghan, I. Fishtik, R. Datta, M. Car and A. Lugo, Surf. Sci. 541, 21 (2003).CrossRefGoogle Scholar
  2. 2.
    G. Hultquist et al., Cata. Lett. 132, 311 (2009).CrossRefGoogle Scholar
  3. 3.
    See, for example, in a recent review: A. Hodgson and S. Haq, Surf. Sci. Rep. 64, 381 (2009).Google Scholar
  4. 4.
    Ch. Ammon, A. Bayer, H.-P. Steinr¨¹ck, and G. Held, Chem. Phys. Lett. 163, 377 (2003).Google Scholar
  5. 5.
    K. Andersson, A. Gomez, C. Glover, D. Nordlund, H. Ostrom, T. Schiros, O. Takahashi, H.Google Scholar
  6. 6.
    Ogasawara, L. G. M. Pettersson, and A. Nilsson, Surf. Sci. 585, L183 (2005).Google Scholar
  7. 7.
    J. Ren and S. Meng, J. Am. Chem. Soc. 128, 9282 (2006).CrossRefGoogle Scholar
  8. 8.
    J. Ren and S. Meng, Phys. Rev. B 77, 054110 (2008).CrossRefGoogle Scholar
  9. 9.
    P. J. Feibelman, Science 295, 99 (2002).CrossRefGoogle Scholar
  10. 10.
    T. Schiros, S. Haq, H. Ogasawara, O. Takahashi, H. Ostrom, K. Andersson, L. G. M. Pettersson,Google Scholar
  11. 11.
    A. Hodgson, and A. Nilsson, Chem. Phys. Lett. 429, 415 (2006).CrossRefGoogle Scholar
  12. 12.
    Yamada, S. Tamamori, H. Okuyama, and T. Aruga, Phys. Rev. Lett. 96, 036105 (2006).Google Scholar
  13. 13.
    J. Carrasco, A. Michaelides, M. Forster, S. Haq, R. Raval, A. Hodgson, Nature Mater. 8Google Scholar
  14. 14.
  15. 15.
    J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle Scholar
  16. 16.
    M. Dion et. al., Phys. Rev. Lett. 92 246401 (2004).CrossRefGoogle Scholar
  17. 17.
    D. C. Langreth et. al., J. Phys.: Condens. Matter 21, 084203 (2009).Google Scholar
  18. 18.
    Y. Zhang and W. Yang, Phys. Rev. Lett. 80, 890 (1998).CrossRefGoogle Scholar
  19. 19.
    [16].J. Klimes, D. Bowler, and A. Michaelides, J. Phys.: Condens. Matter 22, 022201 (2010).Google Scholar
  20. 20.
    A. Gulans, M. J. Puska, and R. M. Nieminen, Phys. Rev. B 79, 201105 (2009).CrossRefGoogle Scholar
  21. 21.
    [18]P. Jurecka, J. Sponer, J. Cerny, and P. Hobza, Phys. Chem. Chem. Phys. 8, 1985 (2006).CrossRefGoogle Scholar
  22. 22.
    G. Roman-Perez and J. M. Soler, Phys. Rev. Lett. 103, 096102 (2009).CrossRefGoogle Scholar
  23. 23.
    I. Hamada, K. Lee, and Y. Morikawa, Phys. Rev. B 81, 115452 (2010).CrossRefGoogle Scholar
  24. 24.
    N. Troullier and J. L. Martins, Phys. Rev. b 43, 1993 (1991).CrossRefGoogle Scholar
  25. 25.
    S. Garcia-Gil, A. Garcia, N. Lorente, and P. Ordejon, Phys. Rev. B 79, 075441 (2009).CrossRefGoogle Scholar
  26. 26.
    S. Meng, E. G. Wang, and S. W. Gao, Phys. Rev. B 69, 195404 (2004).CrossRefGoogle Scholar
  27. 27.
    D. R. Hamann, Phys. Rev. B 55, R10157 (1997).CrossRefGoogle Scholar
  28. 28.
    E. Whalley, Trans. Faraday Soc. 53, 1578 (1957).CrossRefGoogle Scholar
  29. 29.
    A. Hermann and P. Schwerdtfeger, Phys. Rev. Lett. 101, 183005 (2008).CrossRefGoogle Scholar
  30. 30.
    B.Li, A. Michaelides, and M. Schefer, Surf. Sci. 602, L135 (2008).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Sheng Meng
    • 1
  1. 1.Beijing National Laboratory for Condensed Matter Physics, and Institute of PhysicsChinese Academy of SciencesBeijingChina

Personalised recommendations