Advertisement

Biological treatment of solid waste materials from copper and steel industry

  • Vestola E. A. 
  • Kuusenaho M. K. 
  • Närhi H. M. 
  • Tuovinen O. H. 
  • Puhakka J A. 
  • Plumb J. J. 
  • Kaksonen A. H. 
  • Merta E. S. A. 
Chapter

Abstract

The aim of this work was to evaluate the feasibility of bioleaching for the solubilisation of metals from solid waste streams and by-products of copper and steel industries. The leaching experiments were carried out in shake flasks in mineral salts media inoculated with iron and sulphur oxidising acidophiles at 25°C. The experiments tested the effects of the inoculum, pH, supplemental ferrous iron and sulphur, sodium chloride, and the type of waste material. Solubilisation of metals was mainly achieved through acid attack due to the formation of sulphuric acid by sulphur oxidising bacteria. Addition of ferrous iron and chloride ions did not enhance metal solubilisation.

Keywords

Pulp Density Acidithiobacillus Ferrooxidans Sulphur Oxidise Bacterium Thiobacillus Ferrooxidans Final Slag 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anonymous. 1992. 3500-Fe Phenanthroline method for ferrous iron. Standard methods for the examination of water and wastewater. American Public Health Association and Water Environment Federation. Washington DC.Google Scholar
  2. Aung K.M.M., Ting Y. 2005. Bioleaching of spent fluid catalytic cracking catalyst using Aspergillus niger. Journal of Biotechnology 116,159-170.CrossRefGoogle Scholar
  3. Bakhtiari F., Zivdar M., Atashi H., Bagheri S.A. 2008. Bioleaching of copper from smelter dust in a series of airlift bioreactors. Hydrometallurgy 90, 40–45.CrossRefGoogle Scholar
  4. Brandl H., Bosshard R., Wegmann M. 2001. Computer-munching microbes: metal leaching from electronic scrap by bacteria and fungi. Hydrometallurgy 59, 319–326.CrossRefGoogle Scholar
  5. Brandl H., Faramarzi M.A. 2006. Microbe-metal-interactions for the biotechnological treatment of metal-containing solid waste. China Particuology 4, 93–97.CrossRefGoogle Scholar
  6. Bosecker, K. 2001. Microbial leaching in environmental clean-up programmes. Hydrometallurgy 59, 245–248.CrossRefGoogle Scholar
  7. Brombacher C., Bachofen R., Brandl H. 1998. Development of a laboratory-scale leaching plant for metal extraction from fly ash by Thiobacillus strains. Applied and Environmental Microbiology 64, 1237–1241.Google Scholar
  8. Das, A., Modak, J.M., Natarajan, K.A. 1997. Technical note studies on multi-metal iontolerance of Thiobacillus ferrooxidans. Minerals Engineering 10, 743–739.CrossRefGoogle Scholar
  9. Dopson, M., Baker-Austin, C., Bonda, P.L. 2004. First use of two-dimensional polyacrylamide gel electrophoresis to determine phylogenetic relationships Journal of Microbiological Methods 58, 297–302.Google Scholar
  10. Ilyas S., Anwar M., Niazi S., Ghauri M. 2007. Bioleaching of metals from electronic scrap bymoderately thermophilic acidophilic bacteria. Hydrometallurgy 88, 180–188.CrossRefGoogle Scholar
  11. Kinnunen, PH-M., Puhakka, J.A. 2004. High-rate ferric sulphate generation by a Leptopirillum ferriphilum-dominated biofilm and the role of jarosite in biomass retainment in a fluidisedbed reactor. Biotechnology and Bioengineering 85, 697–705.CrossRefGoogle Scholar
  12. Klauber, K., Parker, A., Bronswijk, W., Watling, H.R. 2001. Sulphur speciation of leached chalcopyrite surfaces as determined by X-ray photoelectron spectroscopy. International Journal of Mineral Processing 62, 65–94.CrossRefGoogle Scholar
  13. Klauber, C. 2008. A critical review of the surface chemistry of acidic ferric sulphate dissolution of chalcopyrite with regards to hindered dissolution. International Journal of Mineral Processing 86, 1–17.CrossRefGoogle Scholar
  14. Lu, Z.Y., Jeffrey, M.I., Lawson, F. 2000. The effect of chloride ions on the dissolution of chalcopyrite in acidic solutions. Hydrometallurgy 56, 189–202.CrossRefGoogle Scholar
  15. Mishra D., Kim D.J., Ralph D.E., Ahn J.G., Rhee Y.H. 2007. Bioleaching of metals from spent lithium ion secondary batteries using Acidithiobacillus ferrooxidans. Waste Management 28, 333–338.CrossRefGoogle Scholar
  16. Nemati, M., Harrison, S.T.L. 2000. Effect of solid loading on thermophilic bioleaching of sulphide? minerals. Journal of Chemical Technology and Biotechnology 75, 526–532 Plumb, J.J., Bell, J., Stuckey, D.C. 2001. Microbial populations associated with treatment of an industrial dye effluent in an anaerobic baffled reactor. Applied and Environmental Microbiology 67, 3226–3235.Google Scholar
  17. Rodríquez, Y., Ballester, A., Blázquez, M.L., Gonzáles, F., Muñoz, J.A. 2003. Newinformation on the chalcopyrite bioleaching mechanism at low and high temperatures. Hydrometallurgy 71, 47–56.CrossRefGoogle Scholar
  18. Sand W., Gehrke T., Jozsa P. 2001. Biochemistry of bacterial leaching – direct vs. indirect bioleaching. Hydrometallurgy 59, 159–175.CrossRefGoogle Scholar
  19. Schippers, A., Sand, W. 1999. Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur. Applied and Environmental Microbiology 65, 319–321.Google Scholar
  20. Solisio, A., Lodi, A., Veglio, F. 2002. Bioleaching of zinc and aluminium from industrial waste sludges by means of Thiobacillus ferrooxidans. Waste Management 22, 667–675CrossRefGoogle Scholar
  21. Suzuki I. 2001. Microbial leaching of metals from sulfide minerals. Biotechnology Advances 1 119–132.CrossRefGoogle Scholar
  22. Vestola, E.A., Kuusenaho, M.K., Närhi, H.M., Tuovinen, O.H., Puhakka, J.A., Plumb, J.J., Kaksonen,Google Scholar
  23. A.H. 2010. Acid bioleaching of solid waste materials from copper, steel and recycling industries. Hydrometallurgy 103, 74–79.Google Scholar
  24. Vraar, R.Ž., Parezanovi, I.S., Cerovi, K.P. 2000. Leaching of copper(I) sulfide in calcium chloride solution. Hydrometallurgy 58, 261–267.Google Scholar
  25. Wang Y., Pan Z., Lang J., Xu J. ja Zheng Y. 2007. Bioleaching of chromium from tannery sludge by indigenous Acidithiobacillus thiooxidans. Journal of Hazardous Materials 147, 319–324.Google Scholar
  26. Watling, H.R. 2006. The bioleaching of sulphide minerals with emphasis on copper sulphides. A review. Hydrometallurgy, 84, 81–108.CrossRefGoogle Scholar
  27. Wong J.W.C., Xiang L., Gu X.Y. ja Zhou L.X. 2004. Bioleaching of heavy metals from anaerobically digested sewage sludge using FeS2 as an energy source. Chemosphere 55, 101–107.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Vestola E. A. 
    • 1
    • 2
  • Kuusenaho M. K. 
    • 3
  • Närhi H. M. 
    • 3
  • Tuovinen O. H. 
    • 3
    • 4
  • Puhakka J A. 
    • 3
  • Plumb J. J. 
    • 2
  • Kaksonen A. H. 
    • 2
  • Merta E. S. A. 
    • 1
  1. 1.VTT Technical Research Centre of FinlandEspooFinland
  2. 2.CSIRO Land and WaterWembleyAustralia
  3. 3.Department of Chemistry and BioengineeringTampere University of TechnologyTampereFinland
  4. 4.Department of MicrobiologyOhio State UniversityColumbusUSA

Personalised recommendations