Skip to main content

Biological treatment of solid waste materials from copper and steel industry

  • Chapter
  • First Online:
Materials Challenges and Testing for Supply of Energy and Resources

Abstract

The aim of this work was to evaluate the feasibility of bioleaching for the solubilisation of metals from solid waste streams and by-products of copper and steel industries. The leaching experiments were carried out in shake flasks in mineral salts media inoculated with iron and sulphur oxidising acidophiles at 25°C. The experiments tested the effects of the inoculum, pH, supplemental ferrous iron and sulphur, sodium chloride, and the type of waste material. Solubilisation of metals was mainly achieved through acid attack due to the formation of sulphuric acid by sulphur oxidising bacteria. Addition of ferrous iron and chloride ions did not enhance metal solubilisation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anonymous. 1992. 3500-Fe Phenanthroline method for ferrous iron. Standard methods for the examination of water and wastewater. American Public Health Association and Water Environment Federation. Washington DC.

    Google Scholar 

  • Aung K.M.M., Ting Y. 2005. Bioleaching of spent fluid catalytic cracking catalyst using Aspergillus niger. Journal of Biotechnology 116,159-170.

    Article  CAS  Google Scholar 

  • Bakhtiari F., Zivdar M., Atashi H., Bagheri S.A. 2008. Bioleaching of copper from smelter dust in a series of airlift bioreactors. Hydrometallurgy 90, 40–45.

    Article  CAS  Google Scholar 

  • Brandl H., Bosshard R., Wegmann M. 2001. Computer-munching microbes: metal leaching from electronic scrap by bacteria and fungi. Hydrometallurgy 59, 319–326.

    Article  CAS  Google Scholar 

  • Brandl H., Faramarzi M.A. 2006. Microbe-metal-interactions for the biotechnological treatment of metal-containing solid waste. China Particuology 4, 93–97.

    Article  CAS  Google Scholar 

  • Bosecker, K. 2001. Microbial leaching in environmental clean-up programmes. Hydrometallurgy 59, 245–248.

    Article  CAS  Google Scholar 

  • Brombacher C., Bachofen R., Brandl H. 1998. Development of a laboratory-scale leaching plant for metal extraction from fly ash by Thiobacillus strains. Applied and Environmental Microbiology 64, 1237–1241.

    CAS  Google Scholar 

  • Das, A., Modak, J.M., Natarajan, K.A. 1997. Technical note studies on multi-metal iontolerance of Thiobacillus ferrooxidans. Minerals Engineering 10, 743–739.

    Article  CAS  Google Scholar 

  • Dopson, M., Baker-Austin, C., Bonda, P.L. 2004. First use of two-dimensional polyacrylamide gel electrophoresis to determine phylogenetic relationships Journal of Microbiological Methods 58, 297–302.

    CAS  Google Scholar 

  • Ilyas S., Anwar M., Niazi S., Ghauri M. 2007. Bioleaching of metals from electronic scrap bymoderately thermophilic acidophilic bacteria. Hydrometallurgy 88, 180–188.

    Article  CAS  Google Scholar 

  • Kinnunen, PH-M., Puhakka, J.A. 2004. High-rate ferric sulphate generation by a Leptopirillum ferriphilum-dominated biofilm and the role of jarosite in biomass retainment in a fluidisedbed reactor. Biotechnology and Bioengineering 85, 697–705.

    Article  CAS  Google Scholar 

  • Klauber, K., Parker, A., Bronswijk, W., Watling, H.R. 2001. Sulphur speciation of leached chalcopyrite surfaces as determined by X-ray photoelectron spectroscopy. International Journal of Mineral Processing 62, 65–94.

    Article  CAS  Google Scholar 

  • Klauber, C. 2008. A critical review of the surface chemistry of acidic ferric sulphate dissolution of chalcopyrite with regards to hindered dissolution. International Journal of Mineral Processing 86, 1–17.

    Article  CAS  Google Scholar 

  • Lu, Z.Y., Jeffrey, M.I., Lawson, F. 2000. The effect of chloride ions on the dissolution of chalcopyrite in acidic solutions. Hydrometallurgy 56, 189–202.

    Article  CAS  Google Scholar 

  • Mishra D., Kim D.J., Ralph D.E., Ahn J.G., Rhee Y.H. 2007. Bioleaching of metals from spent lithium ion secondary batteries using Acidithiobacillus ferrooxidans. Waste Management 28, 333–338.

    Article  Google Scholar 

  • Nemati, M., Harrison, S.T.L. 2000. Effect of solid loading on thermophilic bioleaching of sulphide? minerals. Journal of Chemical Technology and Biotechnology 75, 526–532 Plumb, J.J., Bell, J., Stuckey, D.C. 2001. Microbial populations associated with treatment of an industrial dye effluent in an anaerobic baffled reactor. Applied and Environmental Microbiology 67, 3226–3235.

    Google Scholar 

  • Rodríquez, Y., Ballester, A., Blázquez, M.L., Gonzáles, F., Muñoz, J.A. 2003. Newinformation on the chalcopyrite bioleaching mechanism at low and high temperatures. Hydrometallurgy 71, 47–56.

    Article  Google Scholar 

  • Sand W., Gehrke T., Jozsa P. 2001. Biochemistry of bacterial leaching – direct vs. indirect bioleaching. Hydrometallurgy 59, 159–175.

    Article  CAS  Google Scholar 

  • Schippers, A., Sand, W. 1999. Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur. Applied and Environmental Microbiology 65, 319–321.

    CAS  Google Scholar 

  • Solisio, A., Lodi, A., Veglio, F. 2002. Bioleaching of zinc and aluminium from industrial waste sludges by means of Thiobacillus ferrooxidans. Waste Management 22, 667–675

    Article  CAS  Google Scholar 

  • Suzuki I. 2001. Microbial leaching of metals from sulfide minerals. Biotechnology Advances 1 119–132.

    Article  Google Scholar 

  • Vestola, E.A., Kuusenaho, M.K., Närhi, H.M., Tuovinen, O.H., Puhakka, J.A., Plumb, J.J., Kaksonen,

    Google Scholar 

  • A.H. 2010. Acid bioleaching of solid waste materials from copper, steel and recycling industries. Hydrometallurgy 103, 74–79.

    Google Scholar 

  • Vraar, R.Ž., Parezanovi, I.S., Cerovi, K.P. 2000. Leaching of copper(I) sulfide in calcium chloride solution. Hydrometallurgy 58, 261–267.

    Google Scholar 

  • Wang Y., Pan Z., Lang J., Xu J. ja Zheng Y. 2007. Bioleaching of chromium from tannery sludge by indigenous Acidithiobacillus thiooxidans. Journal of Hazardous Materials 147, 319–324.

    Google Scholar 

  • Watling, H.R. 2006. The bioleaching of sulphide minerals with emphasis on copper sulphides. A review. Hydrometallurgy, 84, 81–108.

    Article  CAS  Google Scholar 

  • Wong J.W.C., Xiang L., Gu X.Y. ja Zhou L.X. 2004. Bioleaching of heavy metals from anaerobically digested sewage sludge using FeS2 as an energy source. Chemosphere 55, 101–107.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Vestola .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vestola, E.A. et al. (2012). Biological treatment of solid waste materials from copper and steel industry. In: Böllinghaus, T., Lexow, J., Kishi, T., Kitagawa, M. (eds) Materials Challenges and Testing for Supply of Energy and Resources. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23348-7_26

Download citation

Publish with us

Policies and ethics