Photothermal Radiometry applied in nanoliter melted tellurium alloys

  • A. Cappella
  • J.-L. Battaglia
  • V. Schick
  • A. Kusiak
  • C. Wiemer
  • M. Longo
  • B. Hay
Chapter

Abstract

We report on thermal measurements of molten materials at the nanoliter scale. An experimental setup of Photothermal Radiometry (PTR), formerly developed for solid state measurements, has been adapted for this purpose. The material is a chalcogenide glass-type tellurium alloy, Ge2Sb2Te5 (GST), amorphous at room temperature, and that becomes crystalline at 130°C. The same material, brought to its melting temperature Tm, about 600°C, becomes amorphous after rapid cooling. Since the liquid is the precursor phase of the amorphous state, its characterization is of paramount importance. Thin film PTR characterization was first performed in solid state by measuring the GST thermal conductivity evolution during the structural phase changing, from the amorphous phase to its crystalline phase. In order to characterize the melt at high temperature, a lightly Ge-doped Te alloy sample was secondly fabricated. This latter tellurium alloy melts at a lower temperature, (Tm~450°C, as for pure tellurium) than GST. A random lattice of hemispherical tellurium structures, 500 nm in radius, was grown by MOCVD technique on a thermally oxidized silicon substrate. The hemispheres were then embedded in a 500 nm SiO2 protecting layer in order to prevent evaporation during the melting. A 30 nm cap layer of Pt was then evaporated on the SiO2 as thermal transducer for the laser beam. Measurements have been performed from room temperature up to 650°C. SEM and XRD measurements performed after annealing, have shown that these samples withstood the thermal stress up to 300°C. At temperatures above 380°C some Te is still present in the hemispherical structures, but a part of it has reacted with Pt to form PtTe by migration through the SiO2 matrix. Experiments carried out at temperatures below 300°C have shown an anomalous behaviour of the thermal contact resistance between the tellurium alloy and the oxide interface.

Keywords

Thermal Resistance Thermal Contact Resistance Phase Change Memory Interface Thermal Resistance Oxidize Silicon Wafer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    S. Zhu, C. Li, C. H. Su, B. Lin, H. Ban, R. Scripa, et al., J. Cryst. Growth. 250, 269 (2003).CrossRefGoogle Scholar
  2. 2.
    D. A. Barlow, Phys. Rev. B, 69, 193201 (2004).CrossRefGoogle Scholar
  3. 3.
    A. Kolobov P. Fons, A. Frenkel, A. Ankudinov, T Uruga., Nature Mater. 3, 703 (2004).Google Scholar
  4. 4.
    A. L. Lacaita, Solid-State Electronics 50 24–31 (2006).CrossRefGoogle Scholar
  5. 5.
    N. Yamada and T. Matsunaga, J. Appl. Phys. 88, 7020 (2000).CrossRefGoogle Scholar
  6. 6.
    R. Fallica, J.-L. Battaglia et al., J. Chem. Eng. Data, 54, 1698–1701 (2009).CrossRefGoogle Scholar
  7. 7.
    E.-K. Kim, S.-I. Kwun, S.-M. Lee, H. Seo, J.-G. Yoon, Appl. Phys. Lett. 76, 3864 (2000).CrossRefGoogle Scholar
  8. 8.
    C. Peng, L. Cheng, and M. Mansuripur, J. Appl. Phys. 82, 4183 (1997).CrossRefGoogle Scholar
  9. 9.
    J. P. Reifenberg, D. L. Kencke, K. E. Goodson, IEEE Elect. Dev. Let. 29, 10, Oct. 2008.Google Scholar
  10. 10.
    D. L. Kencke, I. V. Karpov, B. G. Johnson, et al. IEDM Tech. Dig., 323–326 (2007).Google Scholar
  11. 11.
    H.-C. Chien, D-J. Yao, C.-T. Hsu, Appl. Phys. Lett. 93, 231910 (2008).Google Scholar
  12. 12.
    H-K. Lyeo, D. G. Cahill, B-S. Lee, J. Abelson, and al., Appl. Phys. Lett. 89, 151904 (2006).Google Scholar
  13. 13.
    J.-L. Battaglia, A. Kusiak, V. Schick, A. Cappella, C. Wiemer, M. Longo, and E. Varesi, J. Appl. Phys. 107, 044314 (2010).CrossRefGoogle Scholar
  14. 14.
    I.M. Park, J.-K. Jung, S.-O. Ryu et al, J.-K, Thin Solid Films 517, 848(2008).Google Scholar
  15. 15.
    J. Orava. T. Wágner, J. Sik,J. Prikry, et al, J. Appl. Phys., 104, 043523, (2008).Google Scholar
  16. 16.
    V. Weidenhof, I. Friedrich, S. Ziegler, M. Wuttig J. Appl. Phys., 86, 5879, (1999).CrossRefGoogle Scholar
  17. 17.
    J. P. Reifenberg, M.A. Panzer, S. Kim, A. Gibby, et al., Appl. Phys. Lett., 91, 111904, (2007).CrossRefGoogle Scholar
  18. 18.
    K.N. Chen, C. Cabral Jr., L. Krusin-Elbaum Microelectronic Engineering 85, 2346 (2008).CrossRefGoogle Scholar
  19. 19.
    L. Krusin-Elbaum, C. Cabral, Jr., K. N. Chen, et al. Appl. Phys. Lett. 90, 141902 (2007).Google Scholar
  20. 20.
    S. G. Alberici, R. Zonca, B. Pashmakov Appl. Surf. Sc. 231–232, 821 (2004).CrossRefGoogle Scholar
  21. 21.
    C. Cabral K. N. Chen, and L. Krusin-Elbaum, V. DelineAppl. Phys. Lett. 90, 051908 (2007).Google Scholar
  22. 22.
    J.-L. Battaglia, A. Kusiak, C. Rossignol and N. Chigarev Phys. Rev. B 76, 184110 (2007).Google Scholar
  23. 23.
    D. Maillet, S André, J.-C. Batsale, A. Degiovanni, C. Moyne, « Thermal quadrupoles : Solving the heat equation through integral transforms», John Wiley and Sons, New York, (2000).Google Scholar
  24. 24.
    J.-L. Battaglia et al., Int. J. Therm. Sc. 45, 1035 (2006).CrossRefGoogle Scholar
  25. 25.
    T. F. Coleman and Y. Li, SIAM J. Optim. 6, 418 (1996).CrossRefGoogle Scholar
  26. 26.
    A. V. Davydov, M. H. Rand and B. B. Argent, Calphad 9, 3, 375(1995).Google Scholar
  27. 27.
    J. Akola, R. O. Jones, S. Kohara, T. Usuki and E. Bychkov, Phys. Rev. B 81, 094202 (2010)CrossRefGoogle Scholar
  28. 28.
    G. Zhao and Y. N. Wu, Phys.Rev. B 79, 184203 (2009).CrossRefGoogle Scholar
  29. 29.
    C. Li C.-H. Su, S. L. Lehoczky, R. N. Scripa,.B. Lin H. Ban J. Appl. Phys. 97, 083513 (2005).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • A. Cappella
    • 1
    • 2
  • J.-L. Battaglia
    • 2
  • V. Schick
    • 2
  • A. Kusiak
    • 2
  • C. Wiemer
    • 3
  • M. Longo
    • 3
  • B. Hay
    • 1
  1. 1.Scientific and Industrial Metrology Direction, Laboratoire National Optical DivisionBureau Nationale de Metrologie – LNETrappesFrance
  2. 2.Laboratoire TREFLE, UMR 8508University of BordeauxTalenceFrance
  3. 3.Laboratorio MDM, IMM-CNRAgrate BrianzaItaly

Personalised recommendations