The use of Focused Ion Beam to Build Nanodevices with Graphitic Structures

  • B. S. Archanjo
  • E. H. Martins Ferreira
  • I. O. Maciel
  • C. M. Almeida
  • V. Carozo
  • C. Legnani
  • W. G. Quirino
  • C. A. Achete
  • A. Jorio


The modification of samples using focused ion beam (FIB) is a very powerful technique in many areas of material science, especially on modification and construction of nanodevices. The aim of this work is the creation of defects, fabrication of ordered patterns and direct deposition of Pt contacts on graphitic structures (from few layers graphene to many layers graphite) by using a Ga+ FIB source together with a field emission gun scanning electron microscope (FEG-SEM) in a dual beam platform. Using this platform, FIB capabilities for fabrication of nanodevices for scientific and technological development are investigated. Micro- Raman Spectroscopy was used to track the changes caused by these fabrication processes by analyzing the ratio between the defect induced Raman D band and the structural G band. This approach provides information about the performance and the damages caused by dual beam techniques when used on graphene samples for device applications.


Dwell Time Graphene Sheet Raman Spectroscopy Graphitic Structure Atomic Force Microscopy Phase Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Seliger, R. L., Kubena, R. L, Olney, R. D., Ward, J. W., Wang, V.: High-resolution, ionbeam processes for microstructure fabrication. J. Vac. Sci. Technol. 16, 1610-1612 (1979).CrossRefGoogle Scholar
  2. 2.
    Giannuzzi, L. A.: Introduction to focused ion beam – Instrumentation, theory, techniques and pratice Springer, New York (2005).Google Scholar
  3. 3.
    Tseng, A. A.: Recent developments in micromilling using focused ion beam technology. J. Micromech. Microeng. 14, R15–R34 (2004).CrossRefGoogle Scholar
  4. 4.
    Reyntjens, S., Puers, R.: A review of focused ion beam applications in microsystem technology. J. Micromech. Microeng. 11, 287–300 (2001).CrossRefGoogle Scholar
  5. 5.
    Stokes, D. J., Wilhelmi, O., Reyntjens, S., Jiao, C., Roussel, L.: New methods for the study and fabrication of nano-structured materials using FIB SEM. J. Nanosci. Nanotechnol. 9, 1268-1271 (2009).CrossRefGoogle Scholar
  6. 6.
    Hernandez-Ramırez, F.; Rodriguez, J.; Casals, O.; Russinyol, E.; Vila, A.; Romano- Rodrıguez, A.; Morante, J. R.; and Abid, M. Sensors and Actuators B 2006, 118, 198.CrossRefGoogle Scholar
  7. 7.
    Gierak, J.: Focused ion beam technology and ultimate applications. Semicond. Sci. Technol. 24, 043001 (2009).CrossRefGoogle Scholar
  8. 8.
    O'Donnell, S. E., Buettner, M., Reinke, P.: Characterization of focused ion beam induced defect structures in graphite for the future guided self-assembly of molecules. J. Vac. Sci. Technol. B 27, 2209-2216 (2009).CrossRefGoogle Scholar
  9. 9.
    Melinon, P., Hannour, A., Bardotti, L., Prevel, B., Gierak, J., Bourhis, E., Faini, G., Canut, B.: Ion beam nanopatterning in graphite: characterization of single extended defects. Nanotechnology 19, 235305 (2008).CrossRefGoogle Scholar
  10. 10.
    Teweldebrhan, D., Balandina, A. A.: Modification of graphene properties due to electronbeam irradiation. Appl. Phys. Lett. 94, 013101 (2009)CrossRefGoogle Scholar
  11. 11.
    Krasheninnikov, A. V., Nordlund, K.: Ion and electron irradiation-induced effects in nanostructured materials. J. Appl. Phys. 107, 071301 (2010).CrossRefGoogle Scholar
  12. 12.
    Dresselhaus, M. S., Kalish, R.: Ion implantation in diamond, graphite and related materials. Berlin, Springer-Verlag (1992) and references contained therein.Google Scholar
  13. 13.
    Lopez, J. J.; Greer, F.; Greer, J. R.: Enhanced resistance of single-layer graphene to ion bombardment. J. Appl. Phys. 107, 104326 (2010).CrossRefGoogle Scholar
  14. 14.
    Zhou, Y. B.; Liao, Z. M.; Wang, Y. F.; Duesberg, G. S.; Xu, J.; Fu Q.; Wu, X. S.; Yu, D. P.: Ion irradiation induced structural and electrical transition in graphene. The J. Chem. Phys. 133, 234703 (2010).CrossRefGoogle Scholar
  15. 15.
    Tuinstra, F., Koenig, J. L.: Raman Spectrum of Graphite. J. Chem. Phys. 53, 1126-1130 (1970).CrossRefGoogle Scholar
  16. 16.
    Ferrari, A. C., Robertson. J.: Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 61, 14095 (2000).Google Scholar
  17. 17.
    Jorio, A., Lucchese, M. M., Stavale, F., Achete, C. A.: Raman spectroscopy study of Ar+ bombardment in highly oriented pyrolytic graphite. Phys. Status Solidi B 246, 2689-2692 (2009).CrossRefGoogle Scholar
  18. 18.
    Krasheninnikov, A .V., Nordlund, K., Keinonen, J.: Energetics, structure, and long-range interaction of vacancy-type defects in carbon nanotubes: Atomistic simulations. Phys. Rev. B: Condens. Matter 65, 165423 (2002).CrossRefGoogle Scholar
  19. 19.
    Nakamura, K., Kitajima, M.: Ion-irradiation effects on the phonon correlation length of graphite studies by raman-spectroscopy. Phys. Rev. B: Condens. Matter Mater. Phys. 45, 78-82 (1992).CrossRefGoogle Scholar
  20. 20.
    Cançado, L. G., Takai, K., Enoki, T., Endo, M., Kim, Y. A., Mizusaki, H., Jorio, A., Coelho, L. N., Magalhaes-Paniago, R., Pimenta, M. A.: General equation for the determination of the crystallite size L-a of nanographite. Appl. Phys. Lett. 88, 163106 (2006).CrossRefGoogle Scholar
  21. 21.
    Lucchese, M. M., Stavale, F., Martins Ferreira, E. H., Vilani, C., Moutinho, M. V. O.,Capaz, R. B., Achete, C. A., Jorio, A.: Quantifying ion-induced defects and Raman relaxation length in graphene by Raman spectroscopy. Carbon 48, 1592-1597 (2010).CrossRefGoogle Scholar
  22. 22.
    Geim, A. K., Novoselov, K. S.: The rise of graphene. Nat. Mat. 6, 183-191 (2007).CrossRefGoogle Scholar
  23. 23.
    Ferrari, A. C., Meyer, J. C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K. S., Roth, S., Geim, A. K.: Raman Spectrum of Graphene and Graphene Layers. Phys. Rev. Lett. 97, 187401 (2006).CrossRefGoogle Scholar
  24. 24.
    Park, C. H., Yang, L., Son, Y. W., Cohen, M. L., Louie, S. G.: Anisotropic behaviours of massless Dirac fermions in graphene under periodic potentials Nat. Phys. 4, 213-217 (2008)Google Scholar
  25. 25.
    Cancado, L. G, Pimenta, M. A., Neves, B. R. A., Dantas. M. S. S. Jorio, A.: Influence of the atomic structure on the Raman spectra of graphite. Phys. Rev. Lett. 93, 247401 (2004)Google Scholar
  26. 26.
    Shailos, A.; Nativel, W.; Kasumov, A.; Collet, C.; Ferrier, M.; Gueron, S.; Deblock, R.; Bouchiat, H.: Proximity effect and multiple Andreev reflections in few-layer graphene. Europhys. Lett. 79, 57008 (2007).CrossRefGoogle Scholar
  27. 27.
    Shao, Q.; Liu, G.; Teweldebrhan, D.; Balandina, A. A.: High-temperature quenching of electrical resistance in graphene interconnects. Appl. Phys. Lett. 92, 202108 (2008).CrossRefGoogle Scholar
  28. 28.
    Fernández-Pacheco, A.; Teresa, J. M.; Córdoba, R.; Ibarra, M. R.: Metal-insulator transition in Pt-C nanowires grown by focused-ion-beam-induced deposition. Phys. Rev. B 79, 174204 (2009).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • B. S. Archanjo
    • 1
  • E. H. Martins Ferreira
    • 1
  • I. O. Maciel
    • 2
  • C. M. Almeida
    • 1
  • V. Carozo
    • 1
  • C. Legnani
    • 1
    • 4
  • W. G. Quirino
    • 1
    • 4
  • C. A. Achete
    • 1
    • 3
  • A. Jorio
    • 1
    • 4
  1. 1.Divisão de Metrologia de MateriaisInstituto Nacional de Metrologia, Normalização e Qualidade Industrial (INMETRO)Duque de CaxiasBrazil
  2. 2.Departamento de Física, ICEUniversidade federal de Juiz de ForaJuiz de ForaBrazil
  3. 3.Programa de Engenharia Metalúrgica e de Materiais (PEMM)Universidade Federal do Rio de JaneiroRio de JaneiroBrazil
  4. 4.Departamento de FísicaUniversidade Federal de Minas GeraisBelo HorizonteBrazil

Personalised recommendations