Cultured and Uncultured Fungal Diversity in Deep-Sea Environments

  • Takahiko Nagahama
  • Yuriko Nagano
Part of the Progress in Molecular and Subcellular Biology book series (PMSB, volume 53)


The importance of fungi found in deep-sea extreme environments is becoming increasingly recognized. In this chapter, current scientific findings on the fungal diversity in several deep-sea environments by conventional culture and culture-independent methods are reviewed and discussed, primarily focused on culture-independent approaches. Fungal species detected by conventional culture methods mostly belonged to Ascomycota and Basidiomycota phyla. Culture-independent approaches have revealed the presence of highly novel fungal phylotypes, including new taxonomic groups placed in deep branches within the phylum Chytridiomycota and unknown ancient fungal groups. Future attempts to culture these unknown fungal groups may provide key insights into the early evolution of fungi and their ecological and physiological significance in deep-sea environments.


Fungal Community Fungal Diversity Hydrothermal Vent Fungal Taxon Gravity Corer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Amend AS, Seifert KA, Bruns TD (2010) Quantifying microbial communities with 454 pyrosequencing: does read abundance count? Mol Ecol 19:5555–5565PubMedCrossRefGoogle Scholar
  2. Bass D, Howe A, Brown N et al (2007) Yeast forms dominate fungal diversity in the deep oceans. Proc Biol Sci 274:3069–3077PubMedCrossRefGoogle Scholar
  3. Bills GF, Polishook JD (1994) Abundance and diversity of microfungi in leaf litter of a lowland rain forest in Costa Rica. Mycologia 86:187–198CrossRefGoogle Scholar
  4. Bruns T (2006) Evolutionary biology: a kingdom revised. Nature 443:758–761PubMedCrossRefGoogle Scholar
  5. Burgaud G, Calvez TL, Arzur D, Vandenkoornhuyse P, Barbier G (2009) Diversity of culturable marine filamentous fungi from deep-sea hydrothermal vents. Environ Microbiol 11:1588–1600PubMedCrossRefGoogle Scholar
  6. Connell L, Redman R, Craig S, Scorzetti G, Iszard M, Rodriguez R (2008) Diversity of soil yeasts isolated from South Victoria Land, Antarctica. Microb Ecol 56:448–459PubMedCrossRefGoogle Scholar
  7. Damare S, Raghukumar C (2008) Fungi and macroaggregation in deep-sea sediments. Microb Ecol 53:14–27Google Scholar
  8. Damare S, Raghukumar C, Raghukumar S (2006) Fungi in deep-sea sediments of the Central Indian Basin. Deep-Sea Res I 53:14–27CrossRefGoogle Scholar
  9. Edgcomb VP, Beaudoin D, Gast R, Biddle JF, Teske A (2011) Marine subsurface eukaryotes: the fungal majority. Environ Microbiol 13:172–183PubMedCrossRefGoogle Scholar
  10. Eloe EA, Shulse CN, Fadrosh DW, Williamson SJ, Allen EE, Bartlett DH (2011) Compositional differences in particle-associated and free-living microbial assemblages from an extreme deep-ocean environment. Environ Microbiol Rep 3(4):449–458CrossRefGoogle Scholar
  11. Fell JW (1976) Yeasts in oceanic regions. In: Jones EBG (ed) Recent advances in aquatic mycology. Elek Science, London, UK, pp 93–124Google Scholar
  12. Gadanho M, Sampaio JP (2005) Occurrence and diversity of yeasts in the Mid-Atlantic Rigde hydrothermal fields near the azores archipelago. Microb Ecol 50:408–417Google Scholar
  13. Gleason FH, Marano AV (2011) The effects of antifungal substances on some zoosporic fungi (Kingdom Fungi). Hydrobiologia 659:81–92CrossRefGoogle Scholar
  14. Guillot J, Petit T, Degorce-Rubiales F, Guého E, Chermette R (1998) Dermatitis caused by Malassezia pachydermatis in a California sea lion (Zalophus californianus). Vet Rec 142:311–312PubMedCrossRefGoogle Scholar
  15. Ikemoto E, Kyo M (1993) Development of microbiological compact mud sampler. Jpn Mar Sci Technol Res 30:1–16Google Scholar
  16. James TY, Kauff F, Schoch CL et al (2006) Reconstructing the early evolution of fungi using a six-gene phylogeny. Nature 443:818–822PubMedCrossRefGoogle Scholar
  17. Jebaraj CS, Raghukumar C, Behnke A, Stoeck T (2010) Fungal diversity in oxygen-depleted regions of the Arabian Sea revealed by targeted environmental sequencing combined with cultivation. FEMS Microbiol Ecol 71:399–412PubMedCrossRefGoogle Scholar
  18. Jones EBG, Sakayaroj J, Suetrong S, Somrithipol S, Pang KL (2009) Classification of marine Ascomycota, anamorphic taxa and Basidiomycota. Fungal Divers 35:1–187Google Scholar
  19. Kohlmeyer J, Volkmann-Kohlmeyer B (1991) Illustrated key to the filamentous higher marine fungi. Bot Mar 34:1–61CrossRefGoogle Scholar
  20. Konishi M, Fukuoka T, Nagahama T, Morita T, Imura T, Kitamoto D, Hatada Y (2010) Biosurfactant-producing yeast isolated from Calyptogena soyoae (deep-sea cold-seep clam) in the deep sea. J Biosci Bioeng 110:169–175PubMedCrossRefGoogle Scholar
  21. Lai X, Cao L, Tan H, Fang S, Huang Y, Zhou S (2007) Fungal communities from methane hydrate-bearing deep-sea marine sediments in South China Sea. ISME J 1:756–762PubMedCrossRefGoogle Scholar
  22. Lara E, Moreira D, López-García P (2010) The environmental clade LKM11 and Rozella form the deepest branching clade of fungi. Protist 161:116–121PubMedCrossRefGoogle Scholar
  23. Laurin V, Labbé N, Parent S, Juteau P, Villemur R (2008) Microeukaryote diversity in a marine methanol-fed fluidized denitrification system. Microb Ecol 56:637–648PubMedCrossRefGoogle Scholar
  24. Le Calvez T, Gaëtan B, Mahé S, Barbier G, Vandenkoornhuyse P (2009) Fungal diversity in deep-sea hydrothermal ecosystems. Appl Environ Microbiol 75:6415–6421. doi: 10.1128/AEM.00653-09 PubMedCrossRefGoogle Scholar
  25. Lefranc M, Thenot A, Lepere C, Debroas D (2005) Genetic diversity of small eukaryotes in lakes differing by their trophic status. Appl Environ Microbiol 71:5935–5942PubMedCrossRefGoogle Scholar
  26. Lepère C, Boucher D, Jardillier L, Domaizon I, Debroas D (2006) Succession and regulation factors of small eukaryote community composition in a lacustrine ecosystem (Lake Pavin). Appl Environ Microbiol 72:2971–2981PubMedCrossRefGoogle Scholar
  27. Lepère C, Domaizon I, Debroas D (2007) Community composition of lacustrine small eukaryotes in hyper-eutrophic conditions in relation to top-down and bottom-up factors. FEMS Microbiol Ecol 61:483–495PubMedCrossRefGoogle Scholar
  28. Lepère C, Domaizon I, Debroas D (2008) Unexpected Importance of potential parasites in the composition of the freshwater small-eukaryote community. Appl Environ Microbiol 74:2940–2949PubMedCrossRefGoogle Scholar
  29. López-García P, Vereshchaka A, Moreira D (2007) Eukaryotic diversity associated with carbonates and fluid-seawater interface in Lost City hydrothermal field. Environ Microbiol 9:546–554PubMedCrossRefGoogle Scholar
  30. Lorenz R, Molitoris HP (1997) Cultivation of fungi under simulated deep sea conditions. Mycol Res 101(11):1355–1365CrossRefGoogle Scholar
  31. Luo Q, Krumholz LR, Najar FZ, Peacock AD, Roe BA, White DC, Elshahed MS (2005) Diversity of the microeukaryotic community in sulfide-rich Zodletone spring (Oklahoma). Appl Environ Microbiol 71:6175–6184PubMedCrossRefGoogle Scholar
  32. Mangot J-F, Lepere C, Bouvier C, Debroas D, Domaizon I (2009) Community structure and dynamics of small eukaryotes targeted by new oligonucleotide probes: new insight into the lacustrine microbial food web. Appl Environ Microbiol 75:6373–6381PubMedCrossRefGoogle Scholar
  33. Nagahama T, Hamamoto M, Nakase T, Takami H, Horikoshi K (2001) Distribution and identification of red yeasts in deep-sea environments around the northwest Pacific Ocean. Antonie Van Leeuwenhoek 80:101–110PubMedCrossRefGoogle Scholar
  34. Nagahama T, Takahashi E, Nagano Y, Abdel-Wahab MA, Miyazaki M (2011) Molecular evidence that deep-branching fungi are major fungal components in deep-sea methane cold-seep sediments. Environmental Microbiology 13:2359–2370Google Scholar
  35. Nagano Y, Nagahama T, Hatada Y, Nunoura T, Takami H, Miyazaki J, Takai K, Horikoshi K (2010) Fungal diversity in deep-sea sediments – the presence of novel fungal groups. Fungal Ecol 3:316–325CrossRefGoogle Scholar
  36. Nakagaki K, Hata K, Iwata E, Takeo K (2000) Malassezia pachydermatis isolated from a South American sea lion (Otaria byronia) with dermatitis. J Vet Med Sci 62:901–903PubMedCrossRefGoogle Scholar
  37. Pollock CG, Rohrbach B, Ramsay EC (2000) Fungal dermatitis in captive pinnipeds. J Zoo Wildl Med 31:374–378PubMedGoogle Scholar
  38. Quaiser A, Zivanovic Y, Moreira D, López-García P (2011) Comparative metagenomics of bathypelagic plankton and bottom sediment from the Sea of Marmara. ISME J 5:285–304PubMedCrossRefGoogle Scholar
  39. Raghukumar C, Raghukumar S (1998) Barotolerance of fungi isolated from deep-sea sediments of the Indian Ocean. Aquat Microb Ecol 15:153–163CrossRefGoogle Scholar
  40. Raghukumar C, Raghukumar S, Sheelu G, Gupta SM, Nagender Nath B, Rao BR (2004) Buried in time: culturable fungi in a deep-sea sediment core from the Chagos Trench, Indian Ocean. Deep Sea Res I 51:1759–1768Google Scholar
  41. Renker C, Alphei J, Buscot F (2003) Soil nematodes associated with the mammal pathogenic fungal genus Malassezia (Basidiomycota: Ustilaginomycetes) in Central European forests. Biol Fertil Soils 37:70–72Google Scholar
  42. Sauvadet A-L, Gobet A, Guillou L (2010) Comparative analysis between protist communities from the deep-sea pelagic ecosystem and specific deep hydrothermal habitats. Environ Microbiol 12:2946–2964PubMedCrossRefGoogle Scholar
  43. Savin MC, Martin JL, LeGresley M, Giewat M, Rooney-Varga J (2004) Plankton diversity in the Bay of Fundy as measured by morphological and molecular methods. Microb Ecol 48:51–65PubMedCrossRefGoogle Scholar
  44. Singh P, Raghukumar C, Verma P, Shouche Y (2010) Phylogenetic diversity of culturable fungi from the deep-sea sediments of the Central Indian Basin and their growth characteristics. Fungal Divers 40:89–102CrossRefGoogle Scholar
  45. Singh P, Raghukumar C, Verma P, Shouche Y (2011) Fungal community analysis in the deep-sea sediments of the Central Indian Basin by culture-independent approach. Microb Ecol 61:507–517PubMedCrossRefGoogle Scholar
  46. Šlapeta J, Moreira D, López-García P (2005) The extent of protist diversity: insights from molecular ecology of freshwater eukaryotes. Proc Biol Sci 272:2073–2081PubMedCrossRefGoogle Scholar
  47. Takishita K, Miyake H, Kawato M, Maruyama T (2005) Genetic diversity of microbial eukaryotes in anoxic sediment around fumaroles on a submarine caldera floor based on the small-subunit rDNA phylogeny. Extremophiles 9:185–196PubMedCrossRefGoogle Scholar
  48. Takishita K, Tsuchiya M, Reimer J, Maruyama T (2006) Molecular evidence demonstrating the basidiomycetous fungus Cryptococcus curvatus is the dominant microbial eukaryote in sediment at the Kuroshima Knoll methane seep. Extremophiles 10:165–169PubMedCrossRefGoogle Scholar
  49. Takishita K, Tsuchiya M, Kawato M, Oguri K, Kitazato H, Maruyama T (2007a) Genetic diversity of microbial eukaryotes in anoxic sediment of the saline meromictic lake Namako-ike (Japan): on the detection of anaerobic or anoxic-tolerant lineages of eukaryotes. Protist 158:51–64PubMedCrossRefGoogle Scholar
  50. Takishita K, Yubuki N, Kakizoe N, Inagaki Y, Maruyama T (2007b) Diversity of microbial eukaryotes in sediment at a deep-sea methane cold seep: surveys of ribosomal DNA libraries from raw sediment samples and two enrichment cultures. Extremophiles 11:563–576PubMedCrossRefGoogle Scholar
  51. Tian F, Yu Y, Chen B, Li H, Yao Y-F, Guo X-K (2008) Bacterial, archaeal and eukaryotic diversity in Arctic sediment as revealed by 16 S rRNA and 18 S rRNA gene clone libraries analysis. Polar Biol 32:93–103CrossRefGoogle Scholar
  52. Turchetti B, Buzzini P, Goretti M, Branda E, Diolaiuti G, D’Agata C, Smiraglia C, Vaughan-Martini A (2008) Psychrophilic yeasts in glacial environments of Alpine glaciers. FEMS Microbiol Ecol 63:73–83PubMedCrossRefGoogle Scholar
  53. van Hannen EJ, Mooij W, van Agterveld MP, Gons HJ, Laanbroek HJ (1999) Detritus-dependent development of the microbial community in an experimental system: qualitative analysis by denaturing gradient gel electrophoresis. Appl Environ Microbiol 65:2478–2484PubMedGoogle Scholar
  54. Wolinska J, Giessler S, Koerner H (2009) Molecular identification and hidden diversity of novel Daphnia parasites from European lakes. Appl Environ Microbiol 75:7051–7059PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Food and NutritionHigashi-Chikushi Junior CollegeKitakyusyuJapan
  2. 2.Institute of Biogeosciences, Japan Agency for Marine-Earth Science and Technology (JAMSTEC)YokosukaJapan

Personalised recommendations