Skip to main content

The Mycobiota of the Salterns

  • Chapter
  • First Online:
Biology of Marine Fungi

Part of the book series: Progress in Molecular and Subcellular Biology ((MMB,volume 53))

Abstract

Solar salterns are constructed as shallow multi-pond systems for the production of halite through evaporation of seawater. The main feature of salterns is the discontinuous salinity gradient that provides a range of well-defined habitats with increasing salinities, from moderate to hypersaline. These present one of the most extreme environments, because of the low levels of biologically available water and the toxic concentrations of ions. Up to the year 2000, hypersaline environments were considered to be populated almost exclusively by prokaryotic microorganisms till fungi were reported to be active inhabitants of solar salterns. Since then, numerous fungal species have been described in hypersaline waters around the world. The mycobiota of salterns is represented by different species of the genus Cladosporium and the related meristematic melanized black yeasts, of non-melanized yeasts, of the filamentous genera Penicillium and Aspergillus and their teleomorphic forms (Eurotium and Emericella), and of the basidiomycetous genus Wallemia. Among these, two species became new model organisms for studying the mechanisms of extreme salt tolerance: the extremely halotolerant ascomycetous black yeast Hortaea werneckii and the obligate halophilic basidiomycete Wallemia ichthyophaga.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Hafez S, Maubasher A, Abdel-Fattah H (1978) Cellulose-decomposing fungi of salt marshes in Egypt. Folia Microbiol (Praha) 23(1):37–44

    Article  CAS  Google Scholar 

  • Almagro A, Prista C, Castro S, Quintas C, Madeira-Lopes A, Ramos J, Loureiro-Dias MC (2000) Effects of salts on Debaryomyces hansenii and Saccharomyces cerevisiae under stress conditions. Int J Food Microbiol 56(2–3):191–197

    Article  PubMed  CAS  Google Scholar 

  • Andersen SJ (1995) Compositional changes in surface mycoflora during ripening of naturally fermented sausages. J Food Prot 58:426–429

    Google Scholar 

  • Andre L, Nilsson A, Adler L (1988) The role of glycerol in osmotolerance of the yeast Debaryomyces hansenii. J Gen Microbiol 134:669–677

    CAS  Google Scholar 

  • Andrews JH, Harris RF, Spear RN, Lau GW, Nordheim EV (1994) Morphogenesis and adhesion of Aureobasidium pullulans. Can J Microbiol 40(1):6–17

    Article  CAS  Google Scholar 

  • Arakawa T, Timasheff SN (1985) The stabilization of proteins by osmolytes. Biophys J 47(3):411–414

    Article  PubMed  CAS  Google Scholar 

  • Bensch K, Groenewald JZ, Dijksterhuis J, Starink-Willemse M, Andersen B, Summerell BA, Shin HD, Dugan FM, Schroers HJ, Braun U, Crous PW (2010) Species and ecological diversity within the Cladosporium cladosporioides complex (Davidiellaceae, Capnodiales). Stud Mycol 67:1–94

    Article  PubMed  CAS  Google Scholar 

  • Blackwell M (2001) The yeasts, a taxonomic study. In: Kurtzman CP, Fell JW (eds) Mycopathologia, vol 149(3). Springer, Netherlands, pp 157–158

    Google Scholar 

  • Blomberg A (2000) Metabolic surprises in Saccharomyces cerevisiae during adaptation to saline conditions: questions, some answers and a model. FEMS Microbiol Lett 182(1):1–8

    Article  PubMed  CAS  Google Scholar 

  • Blomberg A, Adler L (1992) Physiology of osmotolerance in fungi. Adv Microb Physiol 33:145–212

    Article  PubMed  CAS  Google Scholar 

  • Brauers G, Ebel R, Edrada R, Wray V, Berg A, Grafe U, Proksch P (2001) Hortein, a new natural product from the fungus Hortaea werneckii associated with the sponge Aplysina aerophoba. J Nat Prod 64(5):651–652

    Article  PubMed  CAS  Google Scholar 

  • Braun U, Crous P, Dugan F, Groenewald J, Sybren De Hoog G (2003) Philogeny and taxonomy of Cladosporium-like hyphomycetes, including Davidiella gen. nov., the teleomorph of Cladosporium s. str. Mycol Prog 2(1):3–18

    Article  Google Scholar 

  • Brock TD (1979) Ecology of saline lakes. In: Shilo M (ed) Strategies of microbial life in extreme environments. Dahlem Konferenzen, Berlin, pp 29–47

    Google Scholar 

  • Butinar L, Santos S, Spencer-Martins I, Oren A, Gunde-Cimerman N (2005a) Yeast diversity in hypersaline habitats. FEMS Microbiol Lett 244(2):229–234

    Article  PubMed  CAS  Google Scholar 

  • Butinar L, Sonjak S, Zalar P, Plemenitaš A, Gunde-Cimerman N (2005b) Melanized halophilic fungi are eukaryotic members of microbial communities in hypersaline waters of solar salterns. Bot Mar 48(1):73–79

    Article  Google Scholar 

  • Butinar L, Zalar P, Frisvad JC, Gunde-Cimerman N (2005c) The genus Eurotium – members of indigenous fungal community in hypersaline waters of salterns. FEMS Microbiol Ecol 51(2):155–166

    Article  PubMed  CAS  Google Scholar 

  • Butinar L, Frisvad JC, Gunde-Cimerman N (2011) Hypersaline waters – a potential source of foodborne toxigenic aspergilli and penicillia. FEMS Microbiol Ecol 77:186–199

    Article  PubMed  CAS  Google Scholar 

  • Cantrell SA, Casillas-Martinez L, Molina M (2006) Characterization of fungi from hypersaline environments of solar salterns using morphological and molecular techniques. Mycol Res 110:962–970

    Article  PubMed  CAS  Google Scholar 

  • Crous PW, Braun U, Schubert K, Groenewald JZ (2007) Delimiting Cladosporium from morphologically similar genera. Stud Mycol 58:33–56

    Article  PubMed  CAS  Google Scholar 

  • DasSarma P, Klebahn G, Klebahn H (2010) Translation of Henrich Klebahn’s ‘Damaging agents of the klippfish – a contribution to the knowledge of the salt-loving organisms’. Saline Systems 6(1):7

    Article  PubMed  Google Scholar 

  • de Hoog GS, Gerrits van den Ende AH (1992) Nutritional pattern and eco-physiology of Hortaea werneckii, agent of human tinea nigra. Antonie Van Leeuwenhoek 62(4):321–329

    Article  PubMed  Google Scholar 

  • de Hoog GS, Guého E (2010) White piedra, black piedra, and tinea nigra. Topley and Wilson’s microbiology and microbial infections. Wiley, New York

    Google Scholar 

  • de Hoog GS, Zalar P, van den Ende BG, Gunde-Cimerman N (2005) Relation of halotolerance to human-pathogenicity in the fungal tree of life: an overview of ecology and evolution under stress. In: Gunde-Cimerman N, Oren A, Plemenitas A (eds) Adaptation to life at high salt-concentration in Archaea, Bacteria and Eukarya, vol 9. Springer, Dordrecht, pp 373–395

    Google Scholar 

  • Diaz-Munoz G, Montalvo-Rodriguez R (2005) Halophilic black yeast Hortaea werneckii in the Cabo Rojo Solar Salterns: its first record for this extreme environment in Puerto Rico. Caribb J Sci 41(2):360–365

    Google Scholar 

  • Domsch KH, Gams W, Anderson TH (1990) Compendium of soil fungi. Academic, London

    Google Scholar 

  • Dugan FM, Schubert K, Braun U (2004) Check-list of Cladosporium names. Schlechtendalia 11:1–103

    Google Scholar 

  • Fettich M, Lenassi M, Veranič P, Gunde-Cimerman N, Plemenitaš A (2011) Identification and characterization of putative osmosensors, HwSho1A and HwSho1B, from the extremely halotolerant black yeast Hortaea werneckii. Fungal Genet Biol 48(5):475–484

    Article  PubMed  CAS  Google Scholar 

  • Gläser HU, Thomas D, Gaxiola R, Montrichard F, Surdinkerjan Y, Serrano R (1993) Salt tolerance and methionine biosynthesis in Saccharomyces cerevisiae involve a putative phosphatase gene. EMBO J 12(8):3105–3110

    PubMed  Google Scholar 

  • Gorbushina AA, Panina LK, Vlasov DY, Krumbein WE (1996) Fungi deteriorating marble in Chersonessus. Mikologiya I Fitopatologiya 30(4):23–27

    Google Scholar 

  • Gostinčar C, Turk M, Trbuha T, Vaupotič T, Plemenitaš A, Gunde-Cimerman N (2008) Expression of fatty-acid-modifying enzymes in the halotolerant black yeast Aureobasidium pullulans (de Bary) G. Arnaud under salt stress. Stud Mycol 61:51–59

    Article  PubMed  Google Scholar 

  • Gostinčar C, Turk M, Plemenitaš A, Gunde-Cimerman N (2009) The expressions of Delta(9)-, Delta(12)-desaturases and an elongase by the extremely halotolerant black yeast Hortaea werneckii are salt dependent. FEMS Yeast Res 9(2):247–256

    Article  PubMed  CAS  Google Scholar 

  • Gostinčar C, Grube M, de Hoog S, Zalar P, Gunde-Cimerman N (2010) Extremotolerance in fungi: evolution on the edge. FEMS Microbiol Ecol 71(1):2–11

    Article  PubMed  CAS  Google Scholar 

  • Grant WD (2004) Life at low water activity. Philos Trans R Soc Lond B Biol Sci 359(1448):1249–1266

    Article  PubMed  CAS  Google Scholar 

  • Gunde-Cimerman N, Plemenitaš A (2006) Ecology and molecular adaptations of the halophilic black yeast Hortaea werneckii. Rev Environ Sci Biotechnol 5(2):323–331

    Article  CAS  Google Scholar 

  • Gunde-Cimerman N, Zalar P, de Hoog S, Plemenitaš A (2000) Hypersaline waters in salterns – natural ecological niches for halophilic black yeasts. FEMS Microbiol Ecol 32(3):235–240

    CAS  Google Scholar 

  • Gunde-Cimerman N, Oren A, Plemenitaš A, Butinar L, Sonjak S, Turk M, Uršič V, Zalar P (2005) Halotolerant and halophilic fungi from coastal environments in the Arctics. In: Seckbach J (ed) Adaptation to life at high salt concentrations in Archaea, Bacteria, and Eukarya, vol 9, Cellular origin, life in extreme habitats and astrobiology. Springer, Netherlands, pp 397–423

    Chapter  Google Scholar 

  • Hocking AD, Pitt JI (1980) Dichloran-glycerol medium for enumeration of xerophilic fungi from low-moisture foods. Appl Environ Microbiol 39(3):488–492

    PubMed  CAS  Google Scholar 

  • Hocking AD, Miscamble BF, Pitt JI (1994) Water relations of Alternaria alternata, Cladosporium cladosporioides, Cladosporium sphaerospermum, Curvularia lunata and Curvularia pallescens. Mycol Res 98(1):91–94

    Article  Google Scholar 

  • Hohmann S (2002) Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev 66(2):300–372

    Article  PubMed  CAS  Google Scholar 

  • Iwatsu TU, Udagawa SI (1988) Hortaea werneckii isolated from sea-water. Jpn J Med Mycol 29:142–145

    Article  Google Scholar 

  • Jacobson ES, Ikeda R (2005) Effect of melanization upon porosity of the cryptococcal cell wall. Med Mycol 43(4):327–333

    Article  PubMed  CAS  Google Scholar 

  • Javor BJ (1989) Hypersaline environments. In: Schiewer U (ed) Microbiology and biogeochemistry, vol 76(2). Springer, Berlin, p 287

    Google Scholar 

  • Javor BJ (2002) Industrial microbiology of solar salt production. J Ind Microbiol Biotechnol 28(1):42–47

    PubMed  CAS  Google Scholar 

  • King AD, Hocking AD, Pitt JI (1979) Dichloran-rose bengal medium for enumeration and isolation of molds from foods. Appl Environ Microbiol 37(5):959–964

    PubMed  Google Scholar 

  • Kis-Papo T, Grishkan I, Oren A, Wasser SP, Nevo E (2001) Spatiotemporal diversity of filamentous fungi in the hypersaline Dead Sea. Mycol Res 105(6):749–756

    Article  Google Scholar 

  • Kogej T, Ramos J, Plemenitaš A, Gunde-Cimerman N (2005) The halophilic fungus Hortaea werneckii and the halotolerant fungus Aureobasidium pullulans maintain low intracellular cation concentrations in hypersaline environments. Appl Environ Microbiol 71(11):6600–6605

    Article  PubMed  CAS  Google Scholar 

  • Kogej T, Gorbushina AA, Gunde-Cimerman N (2006a) Hypersaline conditions induce changes in cell-wall melanization and colony structure in a halophilic and a xerophilic black yeast species of the genus Trimmatostroma. Mycol Res 110(Pt 6):713–724

    Article  PubMed  Google Scholar 

  • Kogej T, Gostinčar C, Volkmann M, Gorbushina AA, Gunde-Cimerman N (2006b) Mycosporines in extremophilic fungi – novel complementary osmolytes? Environ Chem 3(2):105–110

    Article  CAS  Google Scholar 

  • Kogej T, Stein M, Volkmann M, Gorbushina AA, Galinski EA, Gunde-Cimerman N (2007) Osmotic adaptation of the halophilic fungus Hortaea werneckii: role of osmolytes and melanization. Microbiology 153(Pt 12):4261–4273

    Article  PubMed  CAS  Google Scholar 

  • Kralj Kunčič M, Kogej T, Drobne D, Gunde-Cimerman N (2010) Morphological response of the halophilic fungal genus Wallemia to high salinity. Appl Environ Microbiol 76(1):329–337

    Article  PubMed  CAS  Google Scholar 

  • Kurz M (2008) Compatible solute influence on nucleic acids: many questions but few answers. Saline Systems 4:6

    PubMed  Google Scholar 

  • Lahav R, Fareleira P, Nejidat A, Abeliovich A (2002) The identification and characterization of osmotolerant yeast isolates from chemical wastewater evaporation ponds. Microb Ecol 43(3):388–396

    Article  PubMed  CAS  Google Scholar 

  • Lappalainen S, Pasanen AL, Reiman M, Kalliokoski P (1998) Serum IgG antibodies against Wallemia sebi and Fusarium species in Finnish farmers. Ann Allergy Asthma Immunol 81(6):585–592

    Article  PubMed  CAS  Google Scholar 

  • Larsen TO, Svendsen A, Smedsgaard J (2001) Biochemical characterization of ochratoxin A-producing strains of the genus Penicillium. Appl Environ Microbiol 67(8):3630–3635

    Article  PubMed  CAS  Google Scholar 

  • Larsson C, Gustafsson L (1987) Glycerol production in relation to the ATP pool and heat-production rate of the yeasts Debaryomyces hansenii and Saccharomyces cerevisiae during salt stress. Arch Microbiol 147(4):358–363

    Article  PubMed  CAS  Google Scholar 

  • Larsson C, Gustafsson L (1993) The role of physiological-state in osmotolerance of the salt-tolerant yeast Debaryomyces hansenii. Can J Microbiol 39(6):603–609

    Article  CAS  Google Scholar 

  • Larsson C, Morales C, Gustafsson L, Adler L (1990) Osmoregulation of the salt-tolerant yeast Debaryomyces hansenii grown in a chemostat at different salinities. J Bacteriol 172(4):1769–1774

    PubMed  CAS  Google Scholar 

  • Leathers TD (2003) Biotechnological production and applications of pullulan. Appl Microbiol Biotechnol 62(5–6):468–473

    Article  PubMed  CAS  Google Scholar 

  • Lenassi M, Plemenitaš A (2005) HwSln1p, a putative sensor protein of the HOG signalling pathway in the halophilic black yeast Hortaea werneckii. FEBS J 272:309

    Google Scholar 

  • Lenassi M, Plemenitaš A (2007) Novel group VII histidine kinase HwHhk7B from the halophilic fungi Hortaea werneckii has a putative role in osmosensing. Curr Genet 51(6):393–405

    Article  PubMed  CAS  Google Scholar 

  • Mager WH, Siderius M (2002) Novel insights into the osmotic stress response of yeast. FEMS Yeast Res 2(3):251–257

    PubMed  CAS  Google Scholar 

  • Matheny PB, Gossmann JA, Zalar P, Kumar TKA, Hibbett DS (2006) Resolving the phylogenetic position of the Wallemiomycetes: an enigmatic major lineage of Basidiomycota. Canadian Journal of Botany-Revue Canadienne de Botanique 84(12):1794–1805

    Article  CAS  Google Scholar 

  • Mok WY, Castelo FP, Dasilva MSB (1981) Occurrence of Exophiala werneckii on salted fresh-water fish Osteoglossum bicirrhosum. J Food Technol 16(5):505–512

    Article  Google Scholar 

  • Nishimura K, Miyaji M (1983) Studies on the phylogenesis of pathogenic black yeasts. Mycopathologia 81(3):135–144

    Article  PubMed  CAS  Google Scholar 

  • Norton CF, Grant WD (1988) Survival of halobacteria within fluid inclusions in salt crystals. J Gen Microbiol 134(5):1365–1373

    Google Scholar 

  • Oren A (1999) Bioenergetic aspects of halophilism. Microbiol Mol Biol Rev 63(2):334–348

    PubMed  CAS  Google Scholar 

  • Oren A (2002) Hypersaline environment and their biota. In: Oren A (ed) Halophilic microorganisms and their environments, vol 5, Cellular origin, life in extreme habitats and astrobiology. Kluwer Academic Publishers, Dordrecht, p 575

    Chapter  Google Scholar 

  • Oren A (2005) A hundred years of Dunaliella research: 1905–2005. Saline Syst 1:2

    Article  PubMed  Google Scholar 

  • Pahor M, Poberaj T (1963) Stare Piranske Soline. Mladinska knjiga, Ljubljana

    Google Scholar 

  • Palkova Z, Vachova L (2006) Life within a community: benefit to yeast long-term survival. FEMS Microbiol Rev 30(5):806–824

    Article  PubMed  CAS  Google Scholar 

  • Petrovič U, Gunde-Cimerman N, Plemenitaš A (1999) Salt stress affects sterol biosynthesis in the halophilic black yeast Hortaea werneckii. FEMS Microbiol Lett 180(2):325–330

    Article  PubMed  Google Scholar 

  • Petrovič U, Gunde-Cimerman N, Plemenitaš A (2002) Cellular responses to environmental salinity in the halophilic black yeast Hortaea werneckii. Mol Microbiol 45(3):665–672

    Article  PubMed  Google Scholar 

  • Pitt JI, Hocking AD (1977) Influence of solute and hydrogen-ion concentration on water relations of some xerophilic fungi. J Gen Microbiol 101:35–40

    PubMed  CAS  Google Scholar 

  • Pitt JI, Hocking AD (1997) Fungi and food spoilage, 2nd edn. Blackie Academic & Professional, London

    Book  Google Scholar 

  • Plemenitaš A, Gorjan A, Gunde-Cimerman N, Turk M (2003) HOG signaling pathway in halophilic black yeast Hortaea werneckii. Yeast 20:S207

    Article  CAS  Google Scholar 

  • Plemenitaš A, Vaupotič T, Lenassi M, Kogej T, Gunde-Cimerman N (2008) Adaptation of extremely halotolerant black yeast Hortaea werneckii to increased osmolarity: a molecular perspective at a glance. Stud Mycol 61:67–75

    Article  PubMed  Google Scholar 

  • Prista C, Almagro A, Loureiro-Dias MC, Ramos J (1997) Physiological basis for the high salt tolerance of Debaryomyces hansenii. Appl Environ Microbiol 63(10):4005–4009

    PubMed  CAS  Google Scholar 

  • Rodriguez-Valera F, Ruiz-Berraquero F, Ramos-Cormenzana A (1981) Characteristics of the heterotrophic bacterial populations in hypersaline environments of different salt concentrations. Microb Ecol 7(3):235–243

    Article  Google Scholar 

  • Roussel S, Reboux G, Dalphin JC, Bardonnet K, Millon L, Piarroux R (2004) Microbiological evolution of hay and relapse in patients with farmer's lung. Occup Environ Med 61(1):e3

    PubMed  CAS  Google Scholar 

  • Samson RA, Mouchacca J (1974) Some interesting species of Emericella and Aspergillus from Egyptian desert soil. Antonie Van Leeuwenhoek 40(1):121–131

    Article  PubMed  CAS  Google Scholar 

  • Samson RA, Hoekstra ES, Frisvad JC, Filtenborg O (2002) Introduction to food- and airborne fungi, 6th edn. Centraalbureau voor Schimmelcultures, Baarn

    Google Scholar 

  • Schubert K, Groenewald JZ, Braun U, Dijksterhuis J, Starink M, Hill CF, Zalar P, de Hoog GS, Crous PW (2007) Biodiversity in the Cladosporium herbarum complex (Davidiellaceae, Capnodiales), with standardisation of methods for Cladosporium taxonomy and diagnostics. Stud Mycol 58:105–156

    Article  PubMed  CAS  Google Scholar 

  • Selbmann L, de Hoog GS, Mazzaglia A, Friedmann EI, Onofri S (2005) Fungi at the edge of life: cryptoendolithic black fungi from Antarctic desert. Stud Mycol 51:1–32

    Google Scholar 

  • Sepčić K, Zalar P, Gunde-Cimerman N (2011) Low water activity induces the production of bioactive metabolites in halophilic and halotolerant fungi. Mar Drugs 9(1):59–70

    Google Scholar 

  • Singh RS, Saini GK (2008) Pullulan-hyperproducing color variant strain of Aureobasidium pullulans FB-1 newly isolated from phylloplane of Ficus sp. Bioresour Technol 99(9):3896–3899

    Article  PubMed  CAS  Google Scholar 

  • Sterflinger K, Krumbein WE (1997) Dematiaceous fungi as a major agent for biopitting on Mediterranean marbles and limestones. Geomicrobiol J 14(3):219–230

    Article  Google Scholar 

  • Sterflinger K, de Hoog GS, Haase G (1999) Phylogeny and ecology of meristematic ascomycetes. Stud Mycol 43:5–22

    Google Scholar 

  • Todaro F, Berdar A, Cavaliere A, Criseo G, Pernice L (1983) Gasophthalmus in Black-Sea Bream (Spondyliosoma cantharus) caused by Sarcinomyces crustaceus Lindner. Mycopathologia 81(2):95–97

    Article  PubMed  CAS  Google Scholar 

  • Torzilli AP, Vinroot S, West C (1985) Interactive effect of temperature and salinity on growth and activity of a salt-marsh isolate of Aureobasidium pullulans. Mycologia 77(2):278–284

    Article  Google Scholar 

  • Tresner HD, Hayes JA (1971) Sodium chloride tolerance of terrestrial fungi. Appl Microbiol 22(2):210–213

    PubMed  CAS  Google Scholar 

  • Trüper HG, Galinski EA (1986) Concentrated brines as habitats for microorganisms. Experientia 42(11–12):1182–1187

    Article  Google Scholar 

  • Turk M, Plemenitaš A (2002) The HOG pathway in the halophilic black yeast Hortaea werneckii: isolation of the HOG1 homolog gene and activation of HwHog1p. FEMS Microbiol Lett 216(2):193–199

    Article  PubMed  CAS  Google Scholar 

  • Turk M, Mejanelle L, Šentjurc M, Grimalt JO, Gunde-Cimerman N, Plemenitaš A (2004) Salt-induced changes in lipid composition and membrane fluidity of halophilic yeast-like melanized fungi. Extremophiles 8(1):53–61

    Article  PubMed  CAS  Google Scholar 

  • Turk M, Abramović Z, Plemenitaš A, Gunde-Cimerman N (2007a) Salt stress and plasma-membrane fluidity in selected extremophilic yeasts and yeast-like fungi. FEMS Yeast Res 7(4):550–557

    Article  PubMed  CAS  Google Scholar 

  • Turk M, Montiel V, Zigon D, Plemenitaš A, Ramos J (2007b) Plasma membrane composition of Debaryomyces hansenii adapts to changes in pH and external salinity. Microbiol (Soc Gen Microbiol) 153:3586–3592

    Article  CAS  Google Scholar 

  • Urzi C, De Leo F, Lo Passo C, Criseo G (1999) Intra-specific diversity of Aureobasidium pullulans strains isolated from rocks and other habitats assessed by physiological methods and by random amplified polymorphic DNA (RAPD). J Microbiol Methods 36(1–2):95–105

    Article  PubMed  CAS  Google Scholar 

  • Vadkertiova R, Slavikova E (1995) Killer activity of yeasts isolated from the water environment. Can J Microbiol 41:759–766

    Article  PubMed  CAS  Google Scholar 

  • Vaupotič T, Plemenitaš A (2007) Differential gene expression and HogI interaction with osmoresponsive genes in the extremely halotolerant black yeast Hortaea werneckii. BMC Genomics 8:280

    Article  PubMed  CAS  Google Scholar 

  • Vaupotič T, Gunde-Cimerman N, Plemenitaš A (2007) Novel 3'-phosphoadenosine-5'-phosphatases from extremely halotolerant Hortaea werneckii reveal insight into molecular determinants of salt tolerance of black yeasts. Fungal Genet Biol 44(11):1109–1122

    Article  PubMed  CAS  Google Scholar 

  • Wheeler KA, Hocking AD (1988) Water relations of Paecilomyces variotii, Eurotium amstelodami, Aspergillus candidus and Aspergillus sydowii, xerophilic fungi isolated from Indonesian dried fish. Int J Food Microbiol 7(1):73–78

    Article  PubMed  CAS  Google Scholar 

  • Wheeler KA, Hocking AD, Pitt JI (1988) Influence of temperature on the water relations of Polypaecilum pisce and Basipetospora halophila, 2 halophilic fungi. J Gen Microbiol 134:2255–2260

    CAS  Google Scholar 

  • Wollenzien U, de Hoog GS, Krumbein WE, Urzí C (1995) On the isolation of microcolonial fungi occurring on and in marble and other calcareous rocks. Sci Total Environ 167(1–3):287–294

    CAS  Google Scholar 

  • Yale J, Bohnert HJ (2001) Transcript expression in Saccharomyces cerevisiae at high salinity. J Biol Chem 276(19):15996–16007

    Article  PubMed  CAS  Google Scholar 

  • Zalar P, de Hoog GS, Gunde-Cimerman N (1999a) Taxonomy of the endoconidial black yeast genera Phaeotheca and Hyphospora. Stud Mycol 43:49–56

    Google Scholar 

  • Zalar P, de Hoog GS, Gunde-Cimerman N (1999b) Trimmatostroma salinum, a new species from hypersaline water. Stud Mycol 43:57–62

    Google Scholar 

  • Zalar P, de Hoog GS, Gunde-Cimerman N (1999c) Ecology of halotolerant dothideaceous black yeasts. Stud Mycol 43:38–48

    Google Scholar 

  • Zalar P, de Hoog GS, Schroers HJ, Frank JM, Gunde-Cimerman N (2005a) Taxonomy and phylogeny of the xerophilic genus Wallemia (Wallemiomycetes and Wallemiales, cl. et ord. nov.). Antonie Van Leeuwenhoek 87(4):311–328

    Article  PubMed  CAS  Google Scholar 

  • Zalar P, Kocuvan MA, Plemenitaš A, Gunde-Cimerman N (2005b) Halophilic black yeasts colonize wood immersed in hypersaline water. Bot Mar 48(4):323–326

    Article  Google Scholar 

  • Zalar P, de Hoog GS, Schroers HJ, Crous PW, Groenewald JZ, Gunde-Cimerman N (2007) Phylogeny and ecology of the ubiquitous saprobe Cladosporium sphaerospermum, with descriptions of seven new species from hypersaline environments. Stud Mycol 58:157–183

    Article  PubMed  CAS  Google Scholar 

  • Zalar P, Frisvad JC, Gunde-Cimerman N, Varga J, Samson RA (2008a) Four new species of Emericella from the Mediterranean region of Europe. Mycologia 100(5):779–795

    Article  PubMed  Google Scholar 

  • Zalar P, Gostinčar C, de Hoog GS, Uršič V, Sudhadham M, Gunde-Cimerman N (2008b) Redefinition of Aureobasidium pullulans and its varieties. Stud Mycol 61:21–38

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The scientific studies integral to this report were financed partly through the “Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins” (No. OP13.1.1.2.02.0005) of the European Regional Development (30%), partly by the Slovenian Ministry of Higher Education, Science and Technology (35%), and partly by the Slovenian Research Agency (35%).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nina Gunde-Cimerman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zajc, J., Zalar, P., Plemenitaš, A., Gunde-Cimerman, N. (2012). The Mycobiota of the Salterns. In: Raghukumar, C. (eds) Biology of Marine Fungi. Progress in Molecular and Subcellular Biology(), vol 53. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23342-5_7

Download citation

Publish with us

Policies and ethics