The Mycobiota of the Salterns

  • Janja Zajc
  • Polona Zalar
  • Ana Plemenitaš
  • Nina Gunde-Cimerman
Part of the Progress in Molecular and Subcellular Biology book series (PMSB, volume 53)

Abstract

Solar salterns are constructed as shallow multi-pond systems for the production of halite through evaporation of seawater. The main feature of salterns is the discontinuous salinity gradient that provides a range of well-defined habitats with increasing salinities, from moderate to hypersaline. These present one of the most extreme environments, because of the low levels of biologically available water and the toxic concentrations of ions. Up to the year 2000, hypersaline environments were considered to be populated almost exclusively by prokaryotic microorganisms till fungi were reported to be active inhabitants of solar salterns. Since then, numerous fungal species have been described in hypersaline waters around the world. The mycobiota of salterns is represented by different species of the genus Cladosporium and the related meristematic melanized black yeasts, of non-melanized yeasts, of the filamentous genera Penicillium and Aspergillus and their teleomorphic forms (Eurotium and Emericella), and of the basidiomycetous genus Wallemia. Among these, two species became new model organisms for studying the mechanisms of extreme salt tolerance: the extremely halotolerant ascomycetous black yeast Hortaea werneckii and the obligate halophilic basidiomycete Wallemia ichthyophaga.

Keywords

Dominican Republic Hypersaline Environment Hypersaline Water Black Yeast Pichia Guilliermondii 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The scientific studies integral to this report were financed partly through the “Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins” (No. OP13.1.1.2.02.0005) of the European Regional Development (30%), partly by the Slovenian Ministry of Higher Education, Science and Technology (35%), and partly by the Slovenian Research Agency (35%).

References

  1. Abdel-Hafez S, Maubasher A, Abdel-Fattah H (1978) Cellulose-decomposing fungi of salt marshes in Egypt. Folia Microbiol (Praha) 23(1):37–44CrossRefGoogle Scholar
  2. Almagro A, Prista C, Castro S, Quintas C, Madeira-Lopes A, Ramos J, Loureiro-Dias MC (2000) Effects of salts on Debaryomyces hansenii and Saccharomyces cerevisiae under stress conditions. Int J Food Microbiol 56(2–3):191–197PubMedCrossRefGoogle Scholar
  3. Andersen SJ (1995) Compositional changes in surface mycoflora during ripening of naturally fermented sausages. J Food Prot 58:426–429Google Scholar
  4. Andre L, Nilsson A, Adler L (1988) The role of glycerol in osmotolerance of the yeast Debaryomyces hansenii. J Gen Microbiol 134:669–677Google Scholar
  5. Andrews JH, Harris RF, Spear RN, Lau GW, Nordheim EV (1994) Morphogenesis and adhesion of Aureobasidium pullulans. Can J Microbiol 40(1):6–17CrossRefGoogle Scholar
  6. Arakawa T, Timasheff SN (1985) The stabilization of proteins by osmolytes. Biophys J 47(3):411–414PubMedCrossRefGoogle Scholar
  7. Bensch K, Groenewald JZ, Dijksterhuis J, Starink-Willemse M, Andersen B, Summerell BA, Shin HD, Dugan FM, Schroers HJ, Braun U, Crous PW (2010) Species and ecological diversity within the Cladosporium cladosporioides complex (Davidiellaceae, Capnodiales). Stud Mycol 67:1–94PubMedCrossRefGoogle Scholar
  8. Blackwell M (2001) The yeasts, a taxonomic study. In: Kurtzman CP, Fell JW (eds) Mycopathologia, vol 149(3). Springer, Netherlands, pp 157–158Google Scholar
  9. Blomberg A (2000) Metabolic surprises in Saccharomyces cerevisiae during adaptation to saline conditions: questions, some answers and a model. FEMS Microbiol Lett 182(1):1–8PubMedCrossRefGoogle Scholar
  10. Blomberg A, Adler L (1992) Physiology of osmotolerance in fungi. Adv Microb Physiol 33:145–212PubMedCrossRefGoogle Scholar
  11. Brauers G, Ebel R, Edrada R, Wray V, Berg A, Grafe U, Proksch P (2001) Hortein, a new natural product from the fungus Hortaea werneckii associated with the sponge Aplysina aerophoba. J Nat Prod 64(5):651–652PubMedCrossRefGoogle Scholar
  12. Braun U, Crous P, Dugan F, Groenewald J, Sybren De Hoog G (2003) Philogeny and taxonomy of Cladosporium-like hyphomycetes, including Davidiella gen. nov., the teleomorph of Cladosporium s. str. Mycol Prog 2(1):3–18CrossRefGoogle Scholar
  13. Brock TD (1979) Ecology of saline lakes. In: Shilo M (ed) Strategies of microbial life in extreme environments. Dahlem Konferenzen, Berlin, pp 29–47Google Scholar
  14. Butinar L, Santos S, Spencer-Martins I, Oren A, Gunde-Cimerman N (2005a) Yeast diversity in hypersaline habitats. FEMS Microbiol Lett 244(2):229–234PubMedCrossRefGoogle Scholar
  15. Butinar L, Sonjak S, Zalar P, Plemenitaš A, Gunde-Cimerman N (2005b) Melanized halophilic fungi are eukaryotic members of microbial communities in hypersaline waters of solar salterns. Bot Mar 48(1):73–79CrossRefGoogle Scholar
  16. Butinar L, Zalar P, Frisvad JC, Gunde-Cimerman N (2005c) The genus Eurotium – members of indigenous fungal community in hypersaline waters of salterns. FEMS Microbiol Ecol 51(2):155–166PubMedCrossRefGoogle Scholar
  17. Butinar L, Frisvad JC, Gunde-Cimerman N (2011) Hypersaline waters – a potential source of foodborne toxigenic aspergilli and penicillia. FEMS Microbiol Ecol 77:186–199PubMedCrossRefGoogle Scholar
  18. Cantrell SA, Casillas-Martinez L, Molina M (2006) Characterization of fungi from hypersaline environments of solar salterns using morphological and molecular techniques. Mycol Res 110:962–970PubMedCrossRefGoogle Scholar
  19. Crous PW, Braun U, Schubert K, Groenewald JZ (2007) Delimiting Cladosporium from morphologically similar genera. Stud Mycol 58:33–56PubMedCrossRefGoogle Scholar
  20. DasSarma P, Klebahn G, Klebahn H (2010) Translation of Henrich Klebahn’s ‘Damaging agents of the klippfish – a contribution to the knowledge of the salt-loving organisms’. Saline Systems 6(1):7PubMedCrossRefGoogle Scholar
  21. de Hoog GS, Gerrits van den Ende AH (1992) Nutritional pattern and eco-physiology of Hortaea werneckii, agent of human tinea nigra. Antonie Van Leeuwenhoek 62(4):321–329PubMedCrossRefGoogle Scholar
  22. de Hoog GS, Guého E (2010) White piedra, black piedra, and tinea nigra. Topley and Wilson’s microbiology and microbial infections. Wiley, New YorkGoogle Scholar
  23. de Hoog GS, Zalar P, van den Ende BG, Gunde-Cimerman N (2005) Relation of halotolerance to human-pathogenicity in the fungal tree of life: an overview of ecology and evolution under stress. In: Gunde-Cimerman N, Oren A, Plemenitas A (eds) Adaptation to life at high salt-concentration in Archaea, Bacteria and Eukarya, vol 9. Springer, Dordrecht, pp 373–395Google Scholar
  24. Diaz-Munoz G, Montalvo-Rodriguez R (2005) Halophilic black yeast Hortaea werneckii in the Cabo Rojo Solar Salterns: its first record for this extreme environment in Puerto Rico. Caribb J Sci 41(2):360–365Google Scholar
  25. Domsch KH, Gams W, Anderson TH (1990) Compendium of soil fungi. Academic, LondonGoogle Scholar
  26. Dugan FM, Schubert K, Braun U (2004) Check-list of Cladosporium names. Schlechtendalia 11:1–103Google Scholar
  27. Fettich M, Lenassi M, Veranič P, Gunde-Cimerman N, Plemenitaš A (2011) Identification and characterization of putative osmosensors, HwSho1A and HwSho1B, from the extremely halotolerant black yeast Hortaea werneckii. Fungal Genet Biol 48(5):475–484PubMedCrossRefGoogle Scholar
  28. Gläser HU, Thomas D, Gaxiola R, Montrichard F, Surdinkerjan Y, Serrano R (1993) Salt tolerance and methionine biosynthesis in Saccharomyces cerevisiae involve a putative phosphatase gene. EMBO J 12(8):3105–3110PubMedGoogle Scholar
  29. Gorbushina AA, Panina LK, Vlasov DY, Krumbein WE (1996) Fungi deteriorating marble in Chersonessus. Mikologiya I Fitopatologiya 30(4):23–27Google Scholar
  30. Gostinčar C, Turk M, Trbuha T, Vaupotič T, Plemenitaš A, Gunde-Cimerman N (2008) Expression of fatty-acid-modifying enzymes in the halotolerant black yeast Aureobasidium pullulans (de Bary) G. Arnaud under salt stress. Stud Mycol 61:51–59PubMedCrossRefGoogle Scholar
  31. Gostinčar C, Turk M, Plemenitaš A, Gunde-Cimerman N (2009) The expressions of Delta(9)-, Delta(12)-desaturases and an elongase by the extremely halotolerant black yeast Hortaea werneckii are salt dependent. FEMS Yeast Res 9(2):247–256PubMedCrossRefGoogle Scholar
  32. Gostinčar C, Grube M, de Hoog S, Zalar P, Gunde-Cimerman N (2010) Extremotolerance in fungi: evolution on the edge. FEMS Microbiol Ecol 71(1):2–11PubMedCrossRefGoogle Scholar
  33. Grant WD (2004) Life at low water activity. Philos Trans R Soc Lond B Biol Sci 359(1448):1249–1266PubMedCrossRefGoogle Scholar
  34. Gunde-Cimerman N, Plemenitaš A (2006) Ecology and molecular adaptations of the halophilic black yeast Hortaea werneckii. Rev Environ Sci Biotechnol 5(2):323–331CrossRefGoogle Scholar
  35. Gunde-Cimerman N, Zalar P, de Hoog S, Plemenitaš A (2000) Hypersaline waters in salterns – natural ecological niches for halophilic black yeasts. FEMS Microbiol Ecol 32(3):235–240Google Scholar
  36. Gunde-Cimerman N, Oren A, Plemenitaš A, Butinar L, Sonjak S, Turk M, Uršič V, Zalar P (2005) Halotolerant and halophilic fungi from coastal environments in the Arctics. In: Seckbach J (ed) Adaptation to life at high salt concentrations in Archaea, Bacteria, and Eukarya, vol 9, Cellular origin, life in extreme habitats and astrobiology. Springer, Netherlands, pp 397–423CrossRefGoogle Scholar
  37. Hocking AD, Pitt JI (1980) Dichloran-glycerol medium for enumeration of xerophilic fungi from low-moisture foods. Appl Environ Microbiol 39(3):488–492PubMedGoogle Scholar
  38. Hocking AD, Miscamble BF, Pitt JI (1994) Water relations of Alternaria alternata, Cladosporium cladosporioides, Cladosporium sphaerospermum, Curvularia lunata and Curvularia pallescens. Mycol Res 98(1):91–94CrossRefGoogle Scholar
  39. Hohmann S (2002) Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev 66(2):300–372PubMedCrossRefGoogle Scholar
  40. Iwatsu TU, Udagawa SI (1988) Hortaea werneckii isolated from sea-water. Jpn J Med Mycol 29:142–145CrossRefGoogle Scholar
  41. Jacobson ES, Ikeda R (2005) Effect of melanization upon porosity of the cryptococcal cell wall. Med Mycol 43(4):327–333PubMedCrossRefGoogle Scholar
  42. Javor BJ (1989) Hypersaline environments. In: Schiewer U (ed) Microbiology and biogeochemistry, vol 76(2). Springer, Berlin, p 287Google Scholar
  43. Javor BJ (2002) Industrial microbiology of solar salt production. J Ind Microbiol Biotechnol 28(1):42–47PubMedGoogle Scholar
  44. King AD, Hocking AD, Pitt JI (1979) Dichloran-rose bengal medium for enumeration and isolation of molds from foods. Appl Environ Microbiol 37(5):959–964PubMedGoogle Scholar
  45. Kis-Papo T, Grishkan I, Oren A, Wasser SP, Nevo E (2001) Spatiotemporal diversity of filamentous fungi in the hypersaline Dead Sea. Mycol Res 105(6):749–756CrossRefGoogle Scholar
  46. Kogej T, Ramos J, Plemenitaš A, Gunde-Cimerman N (2005) The halophilic fungus Hortaea werneckii and the halotolerant fungus Aureobasidium pullulans maintain low intracellular cation concentrations in hypersaline environments. Appl Environ Microbiol 71(11):6600–6605PubMedCrossRefGoogle Scholar
  47. Kogej T, Gorbushina AA, Gunde-Cimerman N (2006a) Hypersaline conditions induce changes in cell-wall melanization and colony structure in a halophilic and a xerophilic black yeast species of the genus Trimmatostroma. Mycol Res 110(Pt 6):713–724PubMedCrossRefGoogle Scholar
  48. Kogej T, Gostinčar C, Volkmann M, Gorbushina AA, Gunde-Cimerman N (2006b) Mycosporines in extremophilic fungi – novel complementary osmolytes? Environ Chem 3(2):105–110CrossRefGoogle Scholar
  49. Kogej T, Stein M, Volkmann M, Gorbushina AA, Galinski EA, Gunde-Cimerman N (2007) Osmotic adaptation of the halophilic fungus Hortaea werneckii: role of osmolytes and melanization. Microbiology 153(Pt 12):4261–4273PubMedCrossRefGoogle Scholar
  50. Kralj Kunčič M, Kogej T, Drobne D, Gunde-Cimerman N (2010) Morphological response of the halophilic fungal genus Wallemia to high salinity. Appl Environ Microbiol 76(1):329–337PubMedCrossRefGoogle Scholar
  51. Kurz M (2008) Compatible solute influence on nucleic acids: many questions but few answers. Saline Systems 4:6PubMedGoogle Scholar
  52. Lahav R, Fareleira P, Nejidat A, Abeliovich A (2002) The identification and characterization of osmotolerant yeast isolates from chemical wastewater evaporation ponds. Microb Ecol 43(3):388–396PubMedCrossRefGoogle Scholar
  53. Lappalainen S, Pasanen AL, Reiman M, Kalliokoski P (1998) Serum IgG antibodies against Wallemia sebi and Fusarium species in Finnish farmers. Ann Allergy Asthma Immunol 81(6):585–592PubMedCrossRefGoogle Scholar
  54. Larsen TO, Svendsen A, Smedsgaard J (2001) Biochemical characterization of ochratoxin A-producing strains of the genus Penicillium. Appl Environ Microbiol 67(8):3630–3635PubMedCrossRefGoogle Scholar
  55. Larsson C, Gustafsson L (1987) Glycerol production in relation to the ATP pool and heat-production rate of the yeasts Debaryomyces hansenii and Saccharomyces cerevisiae during salt stress. Arch Microbiol 147(4):358–363PubMedCrossRefGoogle Scholar
  56. Larsson C, Gustafsson L (1993) The role of physiological-state in osmotolerance of the salt-tolerant yeast Debaryomyces hansenii. Can J Microbiol 39(6):603–609CrossRefGoogle Scholar
  57. Larsson C, Morales C, Gustafsson L, Adler L (1990) Osmoregulation of the salt-tolerant yeast Debaryomyces hansenii grown in a chemostat at different salinities. J Bacteriol 172(4):1769–1774PubMedGoogle Scholar
  58. Leathers TD (2003) Biotechnological production and applications of pullulan. Appl Microbiol Biotechnol 62(5–6):468–473PubMedCrossRefGoogle Scholar
  59. Lenassi M, Plemenitaš A (2005) HwSln1p, a putative sensor protein of the HOG signalling pathway in the halophilic black yeast Hortaea werneckii. FEBS J 272:309Google Scholar
  60. Lenassi M, Plemenitaš A (2007) Novel group VII histidine kinase HwHhk7B from the halophilic fungi Hortaea werneckii has a putative role in osmosensing. Curr Genet 51(6):393–405PubMedCrossRefGoogle Scholar
  61. Mager WH, Siderius M (2002) Novel insights into the osmotic stress response of yeast. FEMS Yeast Res 2(3):251–257PubMedGoogle Scholar
  62. Matheny PB, Gossmann JA, Zalar P, Kumar TKA, Hibbett DS (2006) Resolving the phylogenetic position of the Wallemiomycetes: an enigmatic major lineage of Basidiomycota. Canadian Journal of Botany-Revue Canadienne de Botanique 84(12):1794–1805CrossRefGoogle Scholar
  63. Mok WY, Castelo FP, Dasilva MSB (1981) Occurrence of Exophiala werneckii on salted fresh-water fish Osteoglossum bicirrhosum. J Food Technol 16(5):505–512CrossRefGoogle Scholar
  64. Nishimura K, Miyaji M (1983) Studies on the phylogenesis of pathogenic black yeasts. Mycopathologia 81(3):135–144PubMedCrossRefGoogle Scholar
  65. Norton CF, Grant WD (1988) Survival of halobacteria within fluid inclusions in salt crystals. J Gen Microbiol 134(5):1365–1373Google Scholar
  66. Oren A (1999) Bioenergetic aspects of halophilism. Microbiol Mol Biol Rev 63(2):334–348PubMedGoogle Scholar
  67. Oren A (2002) Hypersaline environment and their biota. In: Oren A (ed) Halophilic microorganisms and their environments, vol 5, Cellular origin, life in extreme habitats and astrobiology. Kluwer Academic Publishers, Dordrecht, p 575CrossRefGoogle Scholar
  68. Oren A (2005) A hundred years of Dunaliella research: 1905–2005. Saline Syst 1:2PubMedCrossRefGoogle Scholar
  69. Pahor M, Poberaj T (1963) Stare Piranske Soline. Mladinska knjiga, LjubljanaGoogle Scholar
  70. Palkova Z, Vachova L (2006) Life within a community: benefit to yeast long-term survival. FEMS Microbiol Rev 30(5):806–824PubMedCrossRefGoogle Scholar
  71. Petrovič U, Gunde-Cimerman N, Plemenitaš A (1999) Salt stress affects sterol biosynthesis in the halophilic black yeast Hortaea werneckii. FEMS Microbiol Lett 180(2):325–330PubMedCrossRefGoogle Scholar
  72. Petrovič U, Gunde-Cimerman N, Plemenitaš A (2002) Cellular responses to environmental salinity in the halophilic black yeast Hortaea werneckii. Mol Microbiol 45(3):665–672PubMedCrossRefGoogle Scholar
  73. Pitt JI, Hocking AD (1977) Influence of solute and hydrogen-ion concentration on water relations of some xerophilic fungi. J Gen Microbiol 101:35–40PubMedGoogle Scholar
  74. Pitt JI, Hocking AD (1997) Fungi and food spoilage, 2nd edn. Blackie Academic & Professional, LondonCrossRefGoogle Scholar
  75. Plemenitaš A, Gorjan A, Gunde-Cimerman N, Turk M (2003) HOG signaling pathway in halophilic black yeast Hortaea werneckii. Yeast 20:S207CrossRefGoogle Scholar
  76. Plemenitaš A, Vaupotič T, Lenassi M, Kogej T, Gunde-Cimerman N (2008) Adaptation of extremely halotolerant black yeast Hortaea werneckii to increased osmolarity: a molecular perspective at a glance. Stud Mycol 61:67–75PubMedCrossRefGoogle Scholar
  77. Prista C, Almagro A, Loureiro-Dias MC, Ramos J (1997) Physiological basis for the high salt tolerance of Debaryomyces hansenii. Appl Environ Microbiol 63(10):4005–4009PubMedGoogle Scholar
  78. Rodriguez-Valera F, Ruiz-Berraquero F, Ramos-Cormenzana A (1981) Characteristics of the heterotrophic bacterial populations in hypersaline environments of different salt concentrations. Microb Ecol 7(3):235–243CrossRefGoogle Scholar
  79. Roussel S, Reboux G, Dalphin JC, Bardonnet K, Millon L, Piarroux R (2004) Microbiological evolution of hay and relapse in patients with farmer's lung. Occup Environ Med 61(1):e3PubMedGoogle Scholar
  80. Samson RA, Mouchacca J (1974) Some interesting species of Emericella and Aspergillus from Egyptian desert soil. Antonie Van Leeuwenhoek 40(1):121–131PubMedCrossRefGoogle Scholar
  81. Samson RA, Hoekstra ES, Frisvad JC, Filtenborg O (2002) Introduction to food- and airborne fungi, 6th edn. Centraalbureau voor Schimmelcultures, BaarnGoogle Scholar
  82. Schubert K, Groenewald JZ, Braun U, Dijksterhuis J, Starink M, Hill CF, Zalar P, de Hoog GS, Crous PW (2007) Biodiversity in the Cladosporium herbarum complex (Davidiellaceae, Capnodiales), with standardisation of methods for Cladosporium taxonomy and diagnostics. Stud Mycol 58:105–156PubMedCrossRefGoogle Scholar
  83. Selbmann L, de Hoog GS, Mazzaglia A, Friedmann EI, Onofri S (2005) Fungi at the edge of life: cryptoendolithic black fungi from Antarctic desert. Stud Mycol 51:1–32Google Scholar
  84. Sepčić K, Zalar P, Gunde-Cimerman N (2011) Low water activity induces the production of bioactive metabolites in halophilic and halotolerant fungi. Mar Drugs 9(1):59–70Google Scholar
  85. Singh RS, Saini GK (2008) Pullulan-hyperproducing color variant strain of Aureobasidium pullulans FB-1 newly isolated from phylloplane of Ficus sp. Bioresour Technol 99(9):3896–3899PubMedCrossRefGoogle Scholar
  86. Sterflinger K, Krumbein WE (1997) Dematiaceous fungi as a major agent for biopitting on Mediterranean marbles and limestones. Geomicrobiol J 14(3):219–230CrossRefGoogle Scholar
  87. Sterflinger K, de Hoog GS, Haase G (1999) Phylogeny and ecology of meristematic ascomycetes. Stud Mycol 43:5–22Google Scholar
  88. Todaro F, Berdar A, Cavaliere A, Criseo G, Pernice L (1983) Gasophthalmus in Black-Sea Bream (Spondyliosoma cantharus) caused by Sarcinomyces crustaceus Lindner. Mycopathologia 81(2):95–97PubMedCrossRefGoogle Scholar
  89. Torzilli AP, Vinroot S, West C (1985) Interactive effect of temperature and salinity on growth and activity of a salt-marsh isolate of Aureobasidium pullulans. Mycologia 77(2):278–284CrossRefGoogle Scholar
  90. Tresner HD, Hayes JA (1971) Sodium chloride tolerance of terrestrial fungi. Appl Microbiol 22(2):210–213PubMedGoogle Scholar
  91. Trüper HG, Galinski EA (1986) Concentrated brines as habitats for microorganisms. Experientia 42(11–12):1182–1187CrossRefGoogle Scholar
  92. Turk M, Plemenitaš A (2002) The HOG pathway in the halophilic black yeast Hortaea werneckii: isolation of the HOG1 homolog gene and activation of HwHog1p. FEMS Microbiol Lett 216(2):193–199PubMedCrossRefGoogle Scholar
  93. Turk M, Mejanelle L, Šentjurc M, Grimalt JO, Gunde-Cimerman N, Plemenitaš A (2004) Salt-induced changes in lipid composition and membrane fluidity of halophilic yeast-like melanized fungi. Extremophiles 8(1):53–61PubMedCrossRefGoogle Scholar
  94. Turk M, Abramović Z, Plemenitaš A, Gunde-Cimerman N (2007a) Salt stress and plasma-membrane fluidity in selected extremophilic yeasts and yeast-like fungi. FEMS Yeast Res 7(4):550–557PubMedCrossRefGoogle Scholar
  95. Turk M, Montiel V, Zigon D, Plemenitaš A, Ramos J (2007b) Plasma membrane composition of Debaryomyces hansenii adapts to changes in pH and external salinity. Microbiol (Soc Gen Microbiol) 153:3586–3592CrossRefGoogle Scholar
  96. Urzi C, De Leo F, Lo Passo C, Criseo G (1999) Intra-specific diversity of Aureobasidium pullulans strains isolated from rocks and other habitats assessed by physiological methods and by random amplified polymorphic DNA (RAPD). J Microbiol Methods 36(1–2):95–105PubMedCrossRefGoogle Scholar
  97. Vadkertiova R, Slavikova E (1995) Killer activity of yeasts isolated from the water environment. Can J Microbiol 41:759–766PubMedCrossRefGoogle Scholar
  98. Vaupotič T, Plemenitaš A (2007) Differential gene expression and HogI interaction with osmoresponsive genes in the extremely halotolerant black yeast Hortaea werneckii. BMC Genomics 8:280PubMedCrossRefGoogle Scholar
  99. Vaupotič T, Gunde-Cimerman N, Plemenitaš A (2007) Novel 3'-phosphoadenosine-5'-phosphatases from extremely halotolerant Hortaea werneckii reveal insight into molecular determinants of salt tolerance of black yeasts. Fungal Genet Biol 44(11):1109–1122PubMedCrossRefGoogle Scholar
  100. Wheeler KA, Hocking AD (1988) Water relations of Paecilomyces variotii, Eurotium amstelodami, Aspergillus candidus and Aspergillus sydowii, xerophilic fungi isolated from Indonesian dried fish. Int J Food Microbiol 7(1):73–78PubMedCrossRefGoogle Scholar
  101. Wheeler KA, Hocking AD, Pitt JI (1988) Influence of temperature on the water relations of Polypaecilum pisce and Basipetospora halophila, 2 halophilic fungi. J Gen Microbiol 134:2255–2260Google Scholar
  102. Wollenzien U, de Hoog GS, Krumbein WE, Urzí C (1995) On the isolation of microcolonial fungi occurring on and in marble and other calcareous rocks. Sci Total Environ 167(1–3):287–294Google Scholar
  103. Yale J, Bohnert HJ (2001) Transcript expression in Saccharomyces cerevisiae at high salinity. J Biol Chem 276(19):15996–16007PubMedCrossRefGoogle Scholar
  104. Zalar P, de Hoog GS, Gunde-Cimerman N (1999a) Taxonomy of the endoconidial black yeast genera Phaeotheca and Hyphospora. Stud Mycol 43:49–56Google Scholar
  105. Zalar P, de Hoog GS, Gunde-Cimerman N (1999b) Trimmatostroma salinum, a new species from hypersaline water. Stud Mycol 43:57–62Google Scholar
  106. Zalar P, de Hoog GS, Gunde-Cimerman N (1999c) Ecology of halotolerant dothideaceous black yeasts. Stud Mycol 43:38–48Google Scholar
  107. Zalar P, de Hoog GS, Schroers HJ, Frank JM, Gunde-Cimerman N (2005a) Taxonomy and phylogeny of the xerophilic genus Wallemia (Wallemiomycetes and Wallemiales, cl. et ord. nov.). Antonie Van Leeuwenhoek 87(4):311–328PubMedCrossRefGoogle Scholar
  108. Zalar P, Kocuvan MA, Plemenitaš A, Gunde-Cimerman N (2005b) Halophilic black yeasts colonize wood immersed in hypersaline water. Bot Mar 48(4):323–326CrossRefGoogle Scholar
  109. Zalar P, de Hoog GS, Schroers HJ, Crous PW, Groenewald JZ, Gunde-Cimerman N (2007) Phylogeny and ecology of the ubiquitous saprobe Cladosporium sphaerospermum, with descriptions of seven new species from hypersaline environments. Stud Mycol 58:157–183PubMedCrossRefGoogle Scholar
  110. Zalar P, Frisvad JC, Gunde-Cimerman N, Varga J, Samson RA (2008a) Four new species of Emericella from the Mediterranean region of Europe. Mycologia 100(5):779–795PubMedCrossRefGoogle Scholar
  111. Zalar P, Gostinčar C, de Hoog GS, Uršič V, Sudhadham M, Gunde-Cimerman N (2008b) Redefinition of Aureobasidium pullulans and its varieties. Stud Mycol 61:21–38PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Janja Zajc
    • 1
  • Polona Zalar
    • 1
  • Ana Plemenitaš
    • 2
  • Nina Gunde-Cimerman
    • 1
    • 3
  1. 1.Biology DepartmentUniversity of LjubljanaLjubljanaSlovenia
  2. 2.Biology DepartmentUniversity of LjubljanaLjubljanaSlovenia
  3. 3.Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins (CIPKeBiP)LjubljanaSlovenia

Personalised recommendations