Advertisement

Fungal Endosymbionts of Seaweeds

  • T. S. Suryanarayanan
Chapter
Part of the Progress in Molecular and Subcellular Biology book series (PMSB, volume 53)

Abstract

Seaweeds are being studied for their role in supporting coastal marine life and nutrient cycling and for their bioactive metabolites. For a more complete understanding of seaweed communities, it is essential to obtain information about their interactions with various other components of their ecosystem. While interactions of seaweeds with herbivores such as fish and mesograzers and surface colonizers such as bacteria and microalgae are known, their interactions with marine and marine-derived fungi are little understood. This chapter highlights the need for investigations on the little-known ecological group of fungi, viz. the fungal endosymbionts, that have intimate associations with seaweeds.

Keywords

Terrestrial Plant Great Barrier Reef Bioactive Metabolite Marine Fungus Aspergillus Terreus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. A’lvarez-Loayza P, Jr White JF, Torres MS et al (2011) Light converts endosymbiotic fungus to pathogen, influencing seedling survival and niche-space filling of a common tropical tree, Iriartea deltoidea. PLoS One 6(1):e16386CrossRefGoogle Scholar
  2. Abdel-Lateff A, Koenig GM, Fisch KM et al (2002) New antioxidant hydroquinone derivatives from the algicolous marine fungus Acremonium sp. J Nat Prod 65:1605–1611PubMedCrossRefGoogle Scholar
  3. Abdel-Lateff A, Fisch KM, Wright AD et al (2003a) A new antioxidant isobenzofuranone derivative from the algicolous marine fungus Epicoccum sp. Planta Med 69:831–834PubMedCrossRefGoogle Scholar
  4. Abdel-Lateff A, Klemke C, König GM et al (2003b) Two new xanthone derivatives from the algicolous marine fungus Wardomyces anomalus. J Nat Prod 66:706–708PubMedCrossRefGoogle Scholar
  5. Almeida C, Eguereva E, Kehraus S et al (2010) Hydroxylated sclerosporin derivatives from the marine-derived fungus Cadophora malorum. J Nat Prod 73:476–478PubMedCrossRefGoogle Scholar
  6. Alva P, Mckenzie EHC, Pointing SB et al (2002) Do seagrasses harbour endophytes? In: Hyde KD (ed) Fungi in marine environments, Fungal Diversity Research Series. Hong Kong University Press, Hong Kong, UKGoogle Scholar
  7. Anderson LWJ (2007) Control of invasive seaweeds. Bot Mar 50:418–437CrossRefGoogle Scholar
  8. Arnold AE, Engelbrecht BMJ (2007) Fungal endophytes nearly double minimum leaf conductance in seedlings of a neotropical tree species. J Trop Ecol 23:369–372CrossRefGoogle Scholar
  9. Arnold AE, Lutzoni F (2007) Diversity and host range of foliar fungal endophytes: are tropical leaves biodiversity hotspots? Ecology 88:541–549PubMedCrossRefGoogle Scholar
  10. Arnold AE, Mejia LC, Kyllo D et al (2003) Fungal endophytes limit pathogen damage in a tropical tree. Proc Natl Acad Sci U S A 100:15649–15654PubMedCrossRefGoogle Scholar
  11. Arnold AE, Henk DA, Eells RL et al (2007) Diversity and phylogenetic affinities of foliar fungal endophytes in loblolly pine inferred by culturing and environmental PCR. Mycologia 99:185–206PubMedCrossRefGoogle Scholar
  12. Belofsky GN, Jensen PR, Renner MK et al (1998) New cytotoxic sesquiterpenoid nitrobenzoyl esters from a marine isolate of the fungus Aspergillus versicolor. Tetrahedron 54:1715–1724CrossRefGoogle Scholar
  13. Bhadury P, Mohammad BT, Wright PC et al (2006) The current status of natural products from marine fungi and their potential as anti-infective agents. J Ind Microbiol Biotechnol 33:325–337PubMedCrossRefGoogle Scholar
  14. Bhatnagar I, Kim SK (2010) Immense essence of excellence: marine microbial bioactive compounds. Mar Drugs 8:2673–2701PubMedCrossRefGoogle Scholar
  15. Blunt JW, Copp BR, Hu WP et al (2008) Marine natural products. Nat Prod Rep 25:35–94PubMedCrossRefGoogle Scholar
  16. Blunt JW, Copp BR, Munro MH et al (2010) Marine natural products. Nat Prod Rep 27:165–237PubMedCrossRefGoogle Scholar
  17. Bode HB, Bethe B, Höfs R et al (2002) Big effects from small changes: possible ways to explore nature’s chemical diversity. Chem Bio Chem 3:619–627PubMedGoogle Scholar
  18. Brakhage AA, Schroeckh V (2011) Fungal secondary metabolites – strategies to activate silent gene clusters. Fungal Genet Biol 48:15–22PubMedCrossRefGoogle Scholar
  19. Bugni TS, Ireland CM (2004) Marine-derived fungi: a chemically and biologically diverse group of microorganisms. Nat Prod Rep 21:143–163PubMedCrossRefGoogle Scholar
  20. Bugni TS, Janso JE, Williamson RT et al (2004) Dictyosphaeric acids A and B: new decalactones from an undescribed Penicillium sp. obtained from the alga Dictyosphaeria versluyii. J Nat Prod 67:1396–1399PubMedCrossRefGoogle Scholar
  21. Christian OE, Compton J, Christian KR et al (2005) Using Jasplakinolide to turn on pathways that enable the isolation of new Chaetoglobosins from Phomospis asparagi. J Nat Prod 68:1592–1597PubMedCrossRefGoogle Scholar
  22. Cueto M, Jensen PR, Kauffman C et al (2001) Pestalone, a new antibiotic produced by a marine fungus in response to bacterial challenge. J Nat Prod 64:1444–1446PubMedCrossRefGoogle Scholar
  23. Cui CM, Li XM, Li CS et al (2010) Cytoglobosins A-G, Cytochalasans from a marine-derived endophytic fungus, Chaetomium globosum QEN-14. J Nat Prod 73:729–733PubMedCrossRefGoogle Scholar
  24. Dai J, Krohn K, Flörke U et al (2010) Curvularin-type metabolites from the fungus Curvularia sp. isolated from a marine alga. Eur J Org Chem 2010:6928–6937CrossRefGoogle Scholar
  25. Dring MJ (2005) Stress resistance and disease resistance in seaweeds: the role of reactive oxygen metabolism. Adv Bot Res 43:175–207CrossRefGoogle Scholar
  26. Ebel R (2006) Secondary metabolites from marine-derived fungi. In: Proksch P, Müller WEG (eds) Frontiers in marine biotechnology. Horizon Bioscience, Norwich, UKGoogle Scholar
  27. Ebel R (2010) Terpenes from marine-derived fungi. Mar Drugs 8:2340–2368PubMedCrossRefGoogle Scholar
  28. Elsebai MF, Kehraus S, Lindequist U et al (2011) Antimicrobial phenalenone derivatives from the marine-derived fungus Coniothyrium cereale. Org Biomol Chem 9:802–808PubMedCrossRefGoogle Scholar
  29. Feher M, Schmidt JM (2003) Property distributions: differences between drugs, natural products, and molecules from combinatorial chemistry. J Chem Infect Comp Sci 43:218–227CrossRefGoogle Scholar
  30. Fries N (1979) Physiological characteristics of Mycosphaerella ascophylli, a fungal endophyte of the marine brown alga Ascophyllum nodosum. Physiol Plantarum 45:117–121CrossRefGoogle Scholar
  31. Ganley RJ, Brunsfeld SJ, Newcombe G (2004) A community of unknown, endophytic fungi in western white pine. Proc Natl Acad Sci U S A 101:10107–10112PubMedCrossRefGoogle Scholar
  32. Gao SS, Li XM, Du FY et al (2011) Secondary metabolites from a marine-derived endophytic fungus Penicillium chrysogenum QEN-24 S. Mar Drugs 9:59–70CrossRefGoogle Scholar
  33. Harvey JBJ (2002) Intraspecific variation in H. irritans, a fungal endosymbiont of marine brown algae of the North American Pacific. J Phycol 38:16CrossRefGoogle Scholar
  34. Harvey JBJ, Goff LJ (2010) Genetic covariation of the marine fungal symbiont Haloguignardia irritans (Ascomycota, Pezizomycotina) with its algal hosts Cystoseira and Halidrys (Phaeophyceae, Fucales) along the west coast of North America. Fungal Biol 114:82–95PubMedCrossRefGoogle Scholar
  35. Höller U, Wrigh AD, Matthee GF et al (2000) Fungi from marine sponges: diversity, biological activity and secondary metabolites. Mycol Res 104:1354–1365CrossRefGoogle Scholar
  36. Jensen PR, Fenical W (2002) Secondary metabolites from marine fungi. In: Hyde KD (ed) Fungi in marine environments. Fungal Diversity Research Series, Hong Kong, UKGoogle Scholar
  37. Jones EBG, Stanley SJ, Pinruan U (2008) Marine endophyte sources of new chemical natural products: a review. Bot Mar 51:163–170CrossRefGoogle Scholar
  38. Kamenarska Z, Serkedjieva J, Najdenski H et al (2009) Antibacterial, antiviral, and cytotoxic activities of some red and brown seaweeds from the Black sea. Bot Mar 52:80–86CrossRefGoogle Scholar
  39. Kjer J, Debbab A, Aly AH et al (2010) Methods for isolation of marine-derived endophytic fungi and their bioactive secondary products. Nat Protoc 5:479–490PubMedCrossRefGoogle Scholar
  40. Klemke C, Kehraus S, Wright AD et al (2004) New secondary metabolites from the endophytic fungus Apiospora montagnei. J Nat Prod 67:1058–1063PubMedCrossRefGoogle Scholar
  41. Kock I, Draeger S, Schulz B et al (2009) Pseudoanguillosporin A and B: two new isochromans isolated from the endophytic fungus Pseudoanguillospora sp. Eur J Org Chem 2009:1427–1434CrossRefGoogle Scholar
  42. Koehn FE, Carter GT (2005) The evolving role of natural products in drug discovery. Nat Rev Drug Discov 4:206–220PubMedCrossRefGoogle Scholar
  43. Kohlmeyer J (1968) Revisions and descriptions of algicolous marine fungi. J Phytopathol 63:342–363CrossRefGoogle Scholar
  44. Kohlmeyer J, Volkmann-Kohlmeyer B (2003) Marine ascomycetes from algae and animal hosts. Bot Mar 34:1–35CrossRefGoogle Scholar
  45. König GM, Kehraus S, Seibert SF et al (2006) Natural products from marine organisms and their associated microbes. Chembiochem 7:229–238PubMedCrossRefGoogle Scholar
  46. Kralj A, Kehraus S, Krick A et al (2006) Arugosins G and H: prenylated polyketides from the marine-derived fungus Emericella nidulans var. acristata. J Nat Prod 69:995–1000PubMedCrossRefGoogle Scholar
  47. Krohn K, Dai J, Flörke U et al (2005) Botryane metabolites from the fungus Geniculosporium sp. isolated from the marine red alga Polysiphonia. J Nat Prod 68:400–405PubMedCrossRefGoogle Scholar
  48. Kubanek J, Jensen PR, Keifer PA et al (2003) Seaweed resistance to microbial attack: a targeted chemical defense against marine fungi. Proc Natl Acad Sci U S A 100:6916–6921PubMedCrossRefGoogle Scholar
  49. Kumaresan V, Suryanarayanan TS, Johnson JA (2002) Ecology of mangrove endophytes. In: Hyde KD (ed) Fungi in marine environments. Fungal Diversity Research Series, Hong Kong, UKGoogle Scholar
  50. Lam C, Stang A, Harder T (2008) Planktonic bacteria and fungi are selectively eliminated by exposure to marine macroalgae in close proximity. FEMS Microbiol Ecol 63:283–291PubMedCrossRefGoogle Scholar
  51. Lee SM, Li XF, Jiang H et al (2003) Terreusinone, a novel UV-A protecting dipyrroloquinone from the marine algicolous fungus Aspergillus terreus. Tetrahedron Lett 44:7707–7710CrossRefGoogle Scholar
  52. Li XF, Kim SK, King JS et al (2004) Polyketide and sesquiterpenediol metabolites from a marine-derived fungus. Bull Korean Chem Soc 25:607–608CrossRefGoogle Scholar
  53. Li XF, Kim MK, Lee U et al (2005) Myrothenones A and B, cyclopentenone derivatives with tyrosinase inhibitory activity from the marine-derived fungus Myrothecium sp. Chem Pharm Bull 53:453–455PubMedCrossRefGoogle Scholar
  54. Li XF, Zhang DH, Lee U et al (2007) Bromomyrothenone B and botrytinone, cyclopentenone derivatives from a marine isolate of the fungus Botrytis. J Nat Prod 70:307–309PubMedCrossRefGoogle Scholar
  55. Li F, Li K, Li X et al (2011) Chemical constituents of marine algal-derived endophytic fungus Exophiala oligosperma EN-21. Chin J Ocean Limn 29:63–67CrossRefGoogle Scholar
  56. Lin A, Lu X, Fang Y et al (2008) Two new 5-Hydroxy-2-pyrone derivatives isolated from a marine-derived fungus Aspergillus flavus. J Antibiot 61:245–249PubMedCrossRefGoogle Scholar
  57. Llorens A, Matco R, Hinojo MJ et al (2004) Influence of the interactions among ecological variables in the characterization of Zearalenone producing isolates of Fusarium spp. Syst Appl Microbiol 27:253–260PubMedCrossRefGoogle Scholar
  58. Loque CP, Medeiros AO, Pellizzari FM (2010) Fungal community associated with marine macroalgae from Antarctica. Polar Biol 33:641–648CrossRefGoogle Scholar
  59. Lösgen S, Schlörke O, Meindl K et al (2007) Structure and biosynthesis of chatocyclinones, new polyketides produced by and endosymbiotic fungus. Eur J Org Chem 13:2191–2196CrossRefGoogle Scholar
  60. Mann KH (1973) Seaweeds: their productivity and strategy for growth. Science 182:975–981PubMedCrossRefGoogle Scholar
  61. Meyer SW, Mordhorst TF, Choonghwan Lee C et al (2010) Penilumamide, a novel lumazine peptide isolated from the marine-derived fungus, Penicillium sp. CNL-338. Org Biomol Chem 8:2158–2163PubMedCrossRefGoogle Scholar
  62. Miao L, Theresa FN, Qian KPY (2006) Effect of culture conditions on mycelial growth, antibacterial activity, and metabolite profiles of the marine-derived fungus Arthrinium c.f. saccharicola. Appl Microbiol Biotechnol 72:1063–1073PubMedCrossRefGoogle Scholar
  63. Mohamed DJ, Martiny JBH (2010) Patterns of fungal diversity and composition along a salinity gradient. ISME J 5(3):379–388PubMedCrossRefGoogle Scholar
  64. Moksnes PO, Gullström M, Tryman K et al (2008) Trophic cascades in a temperate seagrass community. Oikos 117:763–777CrossRefGoogle Scholar
  65. Newman DJ, Hill RT (2006) New drugs from marine microbes: the tide is turning. J Ind Microbiol Biotechnol 33:539–544PubMedCrossRefGoogle Scholar
  66. Nylund GM, Persson F, Lindegarth M et al (2010) The red alga Bonnemaisonia asparagoides regulates epiphytic bacterial abundance and community composition by chemical defence. FEMS Microbiol Ecol 71:84–93PubMedCrossRefGoogle Scholar
  67. Oh DC, Jensen PR, Fenical W (2006) Zygosporamide, a cytotoxic cyclic depsipeptide from the marine-derived fungus Zygosporium masonii. Tetrahedron Lett 47:8625–8628CrossRefGoogle Scholar
  68. Oh DC, Kauffman CA, Jensen PR et al (2007) Induced production of Emericellamides A and B from the marine-derived fungus Emericella sp. in competing co-culture. J Nat Prod 70:515–520PubMedCrossRefGoogle Scholar
  69. Ohkawa Y, Miki K, Suzuki T et al (2010) Antiangiogenic metabolites from a marine-derived fungus, Hypocrea vinosa. J Nat Prod 73:579–582PubMedCrossRefGoogle Scholar
  70. Osterhage C, Schwibbe M, König GM et al (2000) Differences between marine and terrestrial Phoma species as determined by HPLC-DAD and HPLC-MS. Phytochem Anal 11:1–7CrossRefGoogle Scholar
  71. Osterhage C, König GM, Höller U et al (2002) Rare sesquiterpenes from the algicolous fungus Drechslera dematioidea. J Nat Prod 65:306–313PubMedCrossRefGoogle Scholar
  72. Pettit RK (2010) Small-molecule elicitation of microbial secondary metabolites. Microb Biotechnol 4(4):471–478PubMedCrossRefGoogle Scholar
  73. Pinto LSRC, Azevedo J, Periera O et al (2000) Symptomless infection of banana and maize by endophytic fungi impairs photosynthetic efficiency. New Phytol 147:609–615CrossRefGoogle Scholar
  74. Pontius A, Krick A, Mesry R et al (2008) Monodictyochromes A and B, dimeric xanthone derivatives from the marine algicolous fungus Monodictys putredinis. J Nat Prod 71:1793–1799PubMedCrossRefGoogle Scholar
  75. Qiao MF, Ji NY, Liu XH et al (2010) Indoloditerpenes from an algicolous isolate of Aspergillus oryzae. Bioorg Med Chem Lett 20:5677–5680PubMedCrossRefGoogle Scholar
  76. Raghukumar C (2006) Algal-fungal interactions in the marine ecosystem: symbiosis to parasitism. In: Tewari A (ed) Recent advances on applied aspects of Indian marine algae with reference to global scenario. Central Salt and Marine Chemicals Research Institute, Gujarat, IndiaGoogle Scholar
  77. Raghukumar C (2008) Marine fungal biotechnology: an ecological perspective. Fungal Divers 31:19–35Google Scholar
  78. Raghukumar C, Nagarkar S, Raghukumar (1992) Association of thraustochytrids and fungi with living marine algae. Mycol Res 96:542–546CrossRefGoogle Scholar
  79. Ramaiah N (2006) A review on fungal diseases of algae, marine fishes, shrimps and corals. Ind J Mar Sci 35:380–387Google Scholar
  80. Rayner ADM (1998) Fountains of the forest – the interconnectedness between trees and fungi. Mycol Res 102:1441–1449CrossRefGoogle Scholar
  81. Rodriguez RJ, Henson J, Volkenburgh EV et al (2008) Stress tolerance in plants via habitat-adapted symbiosis. ISME J 2:404–416PubMedCrossRefGoogle Scholar
  82. Saleem M, Ali MS, Hussain S et al (2007) Marine natural products of fungal origin. Nat Prod Rep 24:1142–1152PubMedCrossRefGoogle Scholar
  83. Schiel DR, Foster MS (2006) The population biology of large brown seaweeds: ecological consequences of multiphase life histories in dynamic coastal environments. Annu Rev Ecol Evol Syst 37:343–372CrossRefGoogle Scholar
  84. Schulz B, Draeger S, Cruz TE, Rheinheimer J, Siems S, Loesgen K, Bitzer J, Schloerke O, Zeeck A, Kock I, Hussain H, Dai J, Krohn K (2008) Screening strategies for obtaining novel, biologically active, fungal secondary metabolites from marine habitats. Bot Mar 51:219–234CrossRefGoogle Scholar
  85. Seymour FA, Cresswell JE, Fisher PJ et al (2004) The influence of genotypic variation on metabolite diversity in populations of two endophytic fungal species. Fungal Genet Biol 41:721–734PubMedCrossRefGoogle Scholar
  86. Shigemori H, Komatsu K, Mikamiaa Y et al (1999) Seragakinone A, a new pentacyclic metabolite from a marine-derived fungus. Tetrahedron 55:14925–14930CrossRefGoogle Scholar
  87. Solis MJL, Draeger S, dela Cruz TEE (2010) Marine-derived fungi from Kappaphycus alvarezii and K. striatum as potential causative agents of ice-ice disease in farmed seaweeds. Bot Mar 53:587–594CrossRefGoogle Scholar
  88. Stierle A, Strobel G, Stierle D (1993) Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific Yew. Science 260:214–216PubMedCrossRefGoogle Scholar
  89. Sun X, Guo LD, Hyde KD (2011) Community composition of endophytic fungi in Acer truncatum and their role in decomposition. Fungal Divers 47(1):85–95CrossRefGoogle Scholar
  90. Suryanarayanan TS, Murali TS (2006) Incidence of Leptosphaerulina crassiasca in symptomless leaves of peanut in southern India. J Basic Microbiol 46:305–309PubMedCrossRefGoogle Scholar
  91. Suryanarayanan TS, Thennarasan S (2004) Temporal variation in endophyte assemblages of Plumeria rubra leaves. Fungal Divers 15:195–202Google Scholar
  92. Suryanarayanan TS, Ravishankar JP, Muruganandam V (2010a) Drug discovery: going with the tide. Curr Sci 99:1308Google Scholar
  93. Suryanarayanan TS, Venkatachalam A, Thirunavukkarasu N et al (2010b) Internal mycobiota of marine macroalgae from the Tamilnadu coast: distribution, diversity and biotechnological potential. Bot Mar 53:457–468CrossRefGoogle Scholar
  94. Tsuda M, Kasai Y, Komatsu K et al (2004) Citrinadin A, a novel pentacyclic alkaloid from amrine-derived fungus Penicillium citrinum. Org Lett 6:3087–3089PubMedCrossRefGoogle Scholar
  95. Unterseher M, Schnittler M (2010) Species richness analysis and ITS rDNA phylogeny revealed the majority of cultivable foliar endophytes from beech (Fagus sylvatica). Fungal Ecol 4:366–378CrossRefGoogle Scholar
  96. Vita-Marques AM, Lira SP, Berlinck RGS et al (2008) A multi-screening approach for marine-derived fungal metabolites and the isolation of cyclodepsipeptides from Beauveria feline. Quím Nova 31:1099–1103CrossRefGoogle Scholar
  97. Wagner BL, Lewis LC (2000) Colonization corn, Zea mays, by the endopathogenic fungus Beauveria bassiana. Appl Environ Microbiol 66:3468–3473PubMedCrossRefGoogle Scholar
  98. Wang S, Li X, Teuscher F et al (2006) Chaetopyranin, a benzaldehyde derivative, and other related metabolites from Chaetomium globosum, an endophytic fungus derived from the marine red alga Polysiphonia urceolata. J Nat Prod 69:1622–1625PubMedCrossRefGoogle Scholar
  99. Weber D (2009) Endophytic fungi, occurrence and metabolites. In: Anke T, Weber D (eds) The mycota XV. Springer, Berlin, HeidelbergGoogle Scholar
  100. White JF Jr, Torres MS (2010) Is plant endophyte-mediated defensive mutualism the result of oxidative stress protection? Physiol Plant 138:440–446PubMedCrossRefGoogle Scholar
  101. Zhang Y, Li XM, Proksch P (2007a) Ergosterimide, a new natural Diels–Alder adduct of a steroid and maleimide in the fungus Aspergillus niger. Steroids 72:723–727PubMedCrossRefGoogle Scholar
  102. Zhang Y, Li XM, Wang CY et al (2007b) A new naphthoquinoneimine derivative from the marine algal-derived endophytic fungus Aspergillus niger EN-13. Chin Chem Lett 18:951–953CrossRefGoogle Scholar
  103. Zhang Y, Wang S, Li XM et al (2007c) New sphingolipids with a previously unreported 9-methyl-C20-sphingosine moiety from a marine algous endophytic fungus Aspergillus niger EN-13. Lipids 42:759–764PubMedCrossRefGoogle Scholar
  104. Zuccaro A, Mitchell JI (2005) Fungal communities of seaweeds. In: Dighton J, White JF, Oudeman P (eds) The fungal community: its organization and role in the ecosystem, 3rd edn. CRC, Boca RatonGoogle Scholar
  105. Zuccaro A, Schulz B, Mitchell JI (2003) Molecular detection of ascomycetes associated with Fucus serratus. Mycol Res 107:1451–1466PubMedCrossRefGoogle Scholar
  106. Zuccaro A, Summerbell RC, Gams W et al (2004) A new Acremonium species associated with Fucus spp., and its affinity with a phylogenetically distinct marine Emericellopsis clade. Stud Mycol 50:283–297Google Scholar
  107. Zuccaro A, Schoch CL, Spatafora JW, Kohlmeyer J, Draeger S, Mitchell JI (2008) Detection and identification of fungi intimately associated with the brown seaweed Fucus serratus. Appl Environ Microbiol 74:931–941PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Vivekananda Institute of Tropical Mycology (VINSTROM)ChennaiIndia

Personalised recommendations