Skip to main content

Biotechnology of Marine Fungi

Part of the Progress in Molecular and Subcellular Biology book series (MMB,volume 53)

Abstract

Filamentous fungi are the most widely used eukaryotes in industrial and pharmaceutical applications. Their biotechnological uses include the production of enzymes, vitamins, polysaccharides, pigments, lipids and others. Marine fungi are a still relatively unexplored group in biotechnology. Taxonomic and habitat diversity form the basis for exploration of marine fungal biotechnology. This review covers what is known of the potential applications of obligate and marine-derived fungi obtained from coastal to the oceanic and shallow water to the deep-sea habitats. Recent studies indicate that marine fungi are potential candidates for novel enzymes, bioremediation, biosurfactants, polysaccharides, polyunsaturated fatty acids and secondary metabolites. Future studies that focus on culturing rare and novel marine fungi, combined with knowledge of their physiology and biochemistry will provide a firm basis for marine mycotechnology.

Keywords

  • Coral Reef
  • Endophytic Fungus
  • Marine Fungus
  • Marine Microorganism
  • Terrestrial Fungus

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-23342-5_14
  • Chapter length: 21 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-23342-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)

References

  • Abe F, Miura T, Nagahama T, Inoue A, Usami R, Horikoshi K (2001) Isolation of a highly copper-tolerant yeast, Cryptococcus sp., from the Japan Trench and the induction of superoxide dismutase activity by Cu2+. Biotechnol Lett 23:2027–2034

    CAS  CrossRef  Google Scholar 

  • Abe F, Minegishi H, Miura T, Nagahara T, Usami R, Horikoshi K (2006) Characterization of cold- and high-pressure-active polygalacturonases from a deep-sea yeast, Cryptococcus liquefaciens strain N6. Biosci Biotechnol Biochem 70:296–299

    PubMed  CAS  CrossRef  Google Scholar 

  • Ahearn DG, Meyers SP (1972) The role of fungi in the decomposition of hydrocarbons in the marine environment. In: Walters AH, Vander Hueck, Plas EH (eds) Biodeterioration of materials. Applied Science, London, pp 12–18

    Google Scholar 

  • Alvi KA, Casey A, Nair BG (1998) Pulchellalactam: a CD45 protein tyrosine phosphatase inhibitor from the marine fungus Corollospora pulchella. J Antibiot 51:515–517

    PubMed  CAS  Google Scholar 

  • Babich H, Stotzky G (1983) Nickel toxicity to estuarine/marine fungi and its amelioration by magnesium in sea water. Water Air Soil Poll 19:193–202

    CAS  Google Scholar 

  • Banat IM, Makkar RS, Cameotra SS (2000) Potential commercial applications of microbial surfactants. Appl Microbiol Biot 53:495–508

    CAS  CrossRef  Google Scholar 

  • Bass D, Howe A, Brown N, Barton H, Demidova M, Michelle H, Li L, Sanders H, Watkinson SC, Willcock S, Richards TA (2007) Yeast forms dominate fungal diversity in the deep oceans. Proc R Soc B 22(274):3069–3077

    CrossRef  CAS  Google Scholar 

  • Belofsky GN, Anguera M, Jensen PR, Fenical W, Kock M (2000) Oxepinamides A–C and fumiquinazolines H–I: bioactive metabolites from a marine isolate of a fungus of the genus Acremonium. Eur J Chem 6:1355–1360

    CAS  CrossRef  Google Scholar 

  • Bennett JW (1998) Mycotechnology: the role of fungi in biotechnology. J Biotechnol 11:101–107

    CrossRef  Google Scholar 

  • Bhadury P, Mohammad BT, Wright C (2006) The current status of natural products from marine fungi and their potential as anti-infective agents. J Ind Microbiol Biotechnol 33:325–337

    PubMed  CAS  CrossRef  Google Scholar 

  • Bhatnagar I, Kim Se-Kwon (2010) Immense essence of excellence: marine microbial bioactive compounds. Mar Drugs 8:2673–2701

    PubMed  CAS  CrossRef  Google Scholar 

  • Bishnoi NR, Garima A (2005) Fungus – an alternative for bioremediation of heavy metal containing wastewater: a review. J Sci Ind Res 64:93–100

    CAS  Google Scholar 

  • Blomberg A, Adler L (1992) Physiology of osmotolerance in fungi. Adv Microb Physiol 33:145–212

    PubMed  CAS  CrossRef  Google Scholar 

  • Bongiorni L, Pusceddu A, Danovaro R (2005) Enzymatic activities of epiphytic and benthic thraustochytrids involved in organic matter degradation. Aquat Microb Ecol 41:299–305

    CrossRef  Google Scholar 

  • Brar SK, Verma M, Surampalli RY, Misra K, Tyagi RD, Meunier N, Blais JF (2006) Bioremediation of Hazardous Wastes – A Review. J Hazard Toxic Radioactive Wastes 10:59–72

    CAS  CrossRef  Google Scholar 

  • Brauers G, Edrada RA, Ebel R, Proksch P, Wray V, Berg A, Gräfe U, Schächtele C, Totzke F, Finkenzeller G, Marme D, Kraus J, Münchbach M, Michel M, Bringmann G, Schaumann K (2000) Two new betaenone derivatives and three new anthraquinones from the sponge-associated fungus Microsphaeropsis sp. J Nat Prod 63:739–745

    PubMed  CAS  CrossRef  Google Scholar 

  • Bringmann G, Gulder TA, Lang G, Schmitt S, Stöhr R, Wiese J, Nagel K, Imhoff JF (2007) Large-scale biotechnological production of the antileukemic marine natural product sorbicillactone A. Mar Drugs 5:23–30

    PubMed  CAS  CrossRef  Google Scholar 

  • Burgaud G, Calvez T, Arzur D, Vandenkoornhuyse P, Barbier G (2009) Diversity of culturable marine filamentous fungi from deep-sea hydrothermal vents. Environ Microbiol 11:1588–1600

    PubMed  CrossRef  Google Scholar 

  • Capotorti G, Digianvincenzo P, Cesti P, Bernardi A, Guglielmetti G (2004) Pyrene and benzo(a)pyrene metabolism by an Aspergillus terreus strain isolated from a polycylic aromatic hydrocarbons polluted soil. Biodegradation 15:79–85

    PubMed  CAS  CrossRef  Google Scholar 

  • Chexal KK, Fouweather C, Holker JSE, Simpson TJ, Young K (1974) Structure of shamixanthone and tajixanthone, metabolites of Aspergillus variecolor. J Chem Soc Perkin Trans 1:1584–1593

    CrossRef  Google Scholar 

  • Cooke RC, Whipps JM (1993) Ecophysiology of fungi. Blackwell Scientific Publication, London, pp 324–345

    Google Scholar 

  • Cooney JJ, Doolittle MM, Grahl-Nielsen O, Haaland IM, Kirk PW (1993) Comparison of fatty acids of marine fungi using multivariate statistical analysis. J Ind Microbiol 12:373–378

    CAS  CrossRef  Google Scholar 

  • D’Souza-Ticlo D, Verma AK, Mathew M, Raghukumar C (2006) Effect of nutrient nitrogen on laccase production, its isozyme pattern and effluent decolorization by the fungus NIOCC No. 2a, isolated from mangrove wood. Ind J Mar Sci 35:364–372

    Google Scholar 

  • Daferner M, Anke T, Sterner O (2002) Zopfiellamides A and B, antimicrobial pyrrolidinone derivatives from the marine fungus Zopfiella latipes. Tetrahedron 58:7781–7784

    CAS  CrossRef  Google Scholar 

  • Damare S (2007) Deep-sea fungi: occurrence and adaptations. PhD thesis, Goa University, India

    Google Scholar 

  • Damare S, Raghukumar C (2008) Fungi and macroaggregation in deep-sea sediments. Microb Ecol 27:168–177

    CrossRef  Google Scholar 

  • Damare S, Raghukumar C, Raghukumar S (2006a) Fungi in deep-sea sediments of the Central Indian Basin. Deep-Sea Res I 53:14–27

    CrossRef  Google Scholar 

  • Damare S, Raghukumar C, Muraleedharan UD, Raghukumar S (2006b) Deep-sea fungi as a source of alkaline and cold-tolerant proteases. Enzyme Microbiol Technol 39:172–181

    CAS  CrossRef  Google Scholar 

  • Daniel I, Oger P, Winter R (2006) Origins of life and biochemistry under high-pressure conditions. Chem Soc Rev 35:858–875

    PubMed  CAS  CrossRef  Google Scholar 

  • Davidson BS (1995) New dimensions in natural products research: cultured marine microorganisms. Curr Opin Biotechnol 6:284–291

    CAS  CrossRef  Google Scholar 

  • Davis TA, Volesky B, Mucci A (2003) A review of biochemistry of heavy metal biosorption by brown algae. Water Res 37:4311–4330

    PubMed  CAS  CrossRef  Google Scholar 

  • Dermont G, Bergeron M, Mercier G, Richer-Lafleche M (2008) Soil washing for metal removal: a review of physical/chemical technologies and field applications. J Hazard Mater 152:1–31

    PubMed  CAS  CrossRef  Google Scholar 

  • Dighton J (2003) Fungi in ecosystem processes. Marcel Dekker Inc., New York

    CrossRef  Google Scholar 

  • Ebel R (2006) Secondary metabolites from marine-derived fungi. In: Proksch P, Müller WEG (eds) Frontiers in marine biotechnology. Horizon Bioscience, England, pp 73–143

    Google Scholar 

  • Edgcomb VP, Kysela DT, Teske A, de Vera GA (2002) Benthic eukaryotic diversity in the Guaymas Basin hydrothermal vent environment. Proc Natl Acad Sci U S A 99:7658–7662

    PubMed  CAS  CrossRef  Google Scholar 

  • Eriksson K-E, Blanchette RA, Ander P (1990) Microbial and enzymatic degradation of wood and wood components. Springer, Berlin, p 407

    Google Scholar 

  • Fan KW, Chen F (2007) Production of high-value products by marine microalgae thraustocytrids. In: Yang S-T (ed) Bioprocessing for value-added products from renewable resources. New Technologies and Applications, Amsterdam, Elsevier, pp 293–324

    CrossRef  Google Scholar 

  • Fenical W, Jensen PR (1993) Marine microorganisms: a new biomedical resource. In: Attaway DH, Zaborsky OR (eds) Marine biotechnology, vol 1. Plenum Press, New York, pp 419–457

    Google Scholar 

  • Frolova GM, Sil’chenko AS, Pivkin MV, Mikhailov VV (2001) Amylases of the fungus Aspergillus flavipes associated with Fucus evanescens. Appl Biochem Microbiol 38:134–138

    CrossRef  Google Scholar 

  • Gallo ML, Seldes AM, Cabrera GM (2004) Antibiotic long-chain and α, β-unsaturated aldehydes from the culture of the marine fungus Cladosporium sp. Biochem Syst Ecol 32:545–551

    CAS  CrossRef  Google Scholar 

  • Gao S, Li X, Du F, Li C, Proksch P, Wang B (2011) Secondary metabolites from a marine-derived endophytic fungus Penicillium chrysogenum QEN-24 S. Mar Drugs 9:59–70

    CAS  CrossRef  Google Scholar 

  • GESAMP (IMO/FAO/UNESCO-IOC/UNIDO/WMO/IAEA/UN/UNEP Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection) (2007) Estimates of oil entering the marine environment from sea-based activities. Rep Stud GESAMP No. 75, 96 pp

    Google Scholar 

  • Gisbert C, Rus AM, Bolarín MC, López-Coronado JM, Arrillaga I, Montesinos C, Caro M, Serrano R, Moreno V (2000) The yeast HAL1 gene improves salt tolerance of transgenic tomato. Plant Physiol 123:393–402

    PubMed  CAS  CrossRef  Google Scholar 

  • Godzeski CWJ, Kobayashi J, Ishibashi M (1968) Bioactive metabolites of symbiotic marine microorganisms. Chem Rev 93:1753–1769

    Google Scholar 

  • Grant WD, Atkinson M, Burke B, Molly C (1996) Chitinolysis by the marine ascomycete Corollospora maritima Werdermann: purification and properties of chitobiosidase. Bot Mar 39:177–186

    CAS  CrossRef  Google Scholar 

  • Gunatilaka AAL (2006) Natural products from plant-associated microorganisms: distribution, structural diversity, bioactivity and implications of their occurrence. J Nat Prod 69:509–526

    PubMed  CAS  CrossRef  Google Scholar 

  • Gunde-Cimerman N, Zalar P, de Hoog S, Plemenitas A (2000) Hypersaline waters in saltern-natural ecological niches for black halophilic yeast. FEMS Microbiol Ecol 32:235–240

    CAS  Google Scholar 

  • Hamman S (2004) Bioremediation capabilities of white rot fungi. BI570 – review article Spring

    Google Scholar 

  • Hensens OD, Zink D, Williamson JM, Lotti VJ, Chang RSL, Goetz MA (1991) Variecolin, a sesterterpenoid of novel skeleton from Aspergillus variecolor MF138. J Org Chem 56:3399–3403

    CAS  CrossRef  Google Scholar 

  • Hicks RE, Newell SY (1984) The growth of bacteria and the fungus Phaeosphaeriatypharum (Desm.) Holm (Eumycota: Ascomycotina) in salt-marsh microcosms in the presence and absence of mercury. J Exp Mar Biol Ecol 78:143–155

    CAS  CrossRef  Google Scholar 

  • Holler U (1999) Isolation, biological activity and secondary metabolite investigations of marine derived fungi and selected host sponges. PhD thesis, Universitat Carolo-Wilhelmina

    Google Scholar 

  • Hopmann C, Knauf MA, Weithmann K, Wink J (2001) Aventis Pharma Deutschland GmbH, Germany, 2001. Preparation of Stromemycins as stromelysin inhibitors. PCT International Patent Application No. WO 01/44264 A2

    Google Scholar 

  • Horrocks LA, Yeo YK (1999) Health benefits of docosahexaenoic acid (DHA). Pharmacol Res 40:211–225

    PubMed  CAS  CrossRef  Google Scholar 

  • Hou-jin L, Yong-tong C, Yun-yun C, Chi-keung C, Wen-jian L (2010) Metabolites of marine fungus Aspergillus sp. collected from soft coral Sarcophyton tortuosum. Chem Res Chinese U 26:415–419

    Google Scholar 

  • Hwang Y, Rowley D, Rhodes D, Gertsch J, Fenical W, Bushman F (1999) Mechanism of inhibition of a poxvirus topoisomerase by the marine natural product sansalvamide A. Mol Pharmacol 55:1049–1053

    PubMed  CAS  Google Scholar 

  • Jebaraj CS, Raghukumar C (2009) Anaerobic denitrification in fungi from the coastal marine sediments off Goa, India. Mycol Res 113:100–109

    CrossRef  Google Scholar 

  • Jennings DH (1986) Fungal growth in the sea. In: Moss ST (ed) The biology of marine fungi. Cambridge University Press, London, pp 1–10

    Google Scholar 

  • Jiang Z, Barret MO, Boyd KG, Adams DR, Boyd ASF, Burgess JG (2002) JM47, a cyclic tetrapeptide HC-toxin analogue from a marine Fusarium species. Phytochemistry 60:33–38

    PubMed  CAS  CrossRef  Google Scholar 

  • Jones EBG, Sakayaroj J, Suetrong S, Somrithipol S, Pang KL (2009) Classification of marine Ascomycota, anamorphic taxa and Basidiomycota. Fungal Divers 35:1–189

    Google Scholar 

  • Junghanns C, Moeder M, Krauss G, Martin C, Schlosser D (2005) Degradation of the xenoestrogen nonylphenol by aquatic fungi and their laccases. Microbiology 151:45–57

    PubMed  CAS  CrossRef  Google Scholar 

  • Kadukova J, Vircikova E (2005) Comparison of differences between copper bioaccumulation and biosorption. Environ Int 31:227–232

    PubMed  CAS  CrossRef  Google Scholar 

  • Kanchana R, Muraleedharan U, Raghukumar S (2011) Alkaline lipase activity from the marine protists, thraustochytrids. World J Microbiol Biotechnol. doi:doi:10.1007/s11274-011-0676-8

  • Karageorgis AP, Anagnostou CL, Kaberi H (2005) Geochemistry and mineralogy of the NW Aegean Sea surface sediments: implications for river runoff and anthropogenic impact. Appl Geochem 20:69–88

    CAS  CrossRef  Google Scholar 

  • Karanth NGK, Deo PG, Veenanadig NK (1999) Microbial production of biosurfactants and their importance. Curr Sci 77:116–123

    CAS  Google Scholar 

  • Kawahara N, Nozawa K, Nakajima S, Kawai K (1988) Isolation and structure determination of arugosin E from Aspergillus silvaticus and cycloisoemericellin from Emericellastriata. J Chem Soc, Perkin Trans 1:907–911

    CrossRef  Google Scholar 

  • Keerthi TR, Suresh PV, Sabu A, Rajeevkumar S, Chandrasekaran M (1999) Extracellular production of l-glutaminase by alkalophilic Beauveria bassiana BTMF S10 isolated from marine sediment. World J Microbiol Biotechnol 15:751–752

    CAS  CrossRef  Google Scholar 

  • Kiiskinen LL, Rättö M, Kruus K (2004) Screening for novel laccase producing microbes. J Appl Microbiol 97:640–646

    PubMed  CAS  CrossRef  Google Scholar 

  • Kiran GS, Hema TA, Gandhimathi R, Selvin J, Thomas TA, Rajeetha Ravji T, Natarajaseenivasan K (2009) Optimization and production of a biosurfactant from the sponge-associated marine fungus Aspergillus ustus MSF3. Colloids Surf B Biointerfaces 73:250–256

    PubMed  CAS  CrossRef  Google Scholar 

  • Kobayashi J, Ishibashi M (1993) Bioactive metabolites of symbiotic marine microorganisms. Chem Rev 93:1753–1769

    CAS  CrossRef  Google Scholar 

  • Koh LL, Goh NKC, Chou LM, Tan YW (2000) Chemical and physical defenses of Singapore gorgonians (Octocorallia: Gorgonacea). J Exp Mar Biol Ecol 251:103–115

    PubMed  CrossRef  Google Scholar 

  • Kohlmeyer J, Kohlmeyer E (1979) Marine mycology: the higher fungi. Academic Press, New York, 690

    Google Scholar 

  • Konishi M, Fukuoka T, Nagahama T, Morita T, Imura T, Kitamoto D, Hatada Y (2010) Biosurfactant-producing yeast isolated from Calyptogena soyoae (deep-sea cold-seep clam) in the deep sea. J Biosci Bioeng 110:169–175

    PubMed  CAS  CrossRef  Google Scholar 

  • Krivobok S, Miriouchkine E, Seigle-Murandi F, Benoit-Guyod JL (1998) Biodegradation of anthracene by soil fungi. Chemosphere 37:523–530

    PubMed  CAS  CrossRef  Google Scholar 

  • Kuhad RC, Singh A, Eriksson KEL (1997) Microorganisms and enzymes involved in the degradation of plant fiber cell walls. Adv Biochem Eng Biotechnol 57:47–125

    Google Scholar 

  • Kuznetsova TA, Smetanina OF, Afiyatullov SS, Pivkin MV, Denisenko VA, Elyakov GB (2001) The identification of fusidic acid, a steroidal antibiotic marine isolate of the fungus Stilbella aciculosa. Biochem Syst Ecol 29:873–874

    PubMed  CAS  CrossRef  Google Scholar 

  • Le Campion-Alsumard T, Golubic S, Priess K (1995) Fungi in corals: symbiosis or disease? Interaction between polyps and fungi causes pearl-like skeleton biomineralization. Mar Ecol Prog Ser 117:137–147

    CrossRef  Google Scholar 

  • Lein W, Bornke F, Reindl A, Ehrhardt T, Stitt M, Sonnewald U (2004) Target-based discovery of novel herbicides. Curr Opin Plant Biol 7:219–225

    PubMed  CAS  CrossRef  Google Scholar 

  • Li X, Choi HD, Kang JS, Lee CO, Son BW (2003) New polyoxygenated farnesylcyclohexenones, deacetoxyyanuthone A and its hydro derivative from the marine-derived fungus Penicillium sp. J Nat Prod 66:1499–1500

    PubMed  CAS  CrossRef  Google Scholar 

  • Liberra K, Lindequist U (1995) Marine fungi-a prolific resource of biologically active natural products. Pharmazie 50:583–588

    PubMed  CAS  Google Scholar 

  • Lin Y, Wu X, Feng S, Jiang G, Luo J, Zhou S, Vrijmoed LLP, Jones EBG, Krohn K, Steongröver K, Zsila F (2001) Five unique compounds: xyloketales from mangrove fungus Xylaria sp. from the South China Sea coast. J Org Chem 66:6252–6256

    PubMed  CAS  CrossRef  Google Scholar 

  • Lin W, Brauers G, Ebel R, Wray V, Berg A, Sudarsono PP (2003) Novel chromone derivatives from the fungus Aspergillus versicolor isolated from the marine sponge Xestospongia exigua. J Nat Prod 66:57–61

    PubMed  CAS  CrossRef  Google Scholar 

  • Lippmeier JC, Crawford KS, Owen CB, Rivas AA, Metz JG, Apt KE (2009) Characterization of both polyunsaturated fatty acid biosynthetic pathways in Schizochytrium sp. Lipids 44:221–230

    CrossRef  CAS  Google Scholar 

  • Liu CH, Meng JC, Zou WX, Huang LL, Tang HQ, Tan RX (2002) Antifungal metabolite with a new carbon skeleton from Keissleriella sp YS4108, a marine filamentous fungus. Planta Med 68:363–365

    PubMed  CAS  CrossRef  Google Scholar 

  • Luo W, Vrijmoed LLP, Jones EBG (2005) Screening of marine fungi for lignocellulose-degrading enzyme activities. Bot Mar 48:379–386

    CAS  CrossRef  Google Scholar 

  • Malik A (2004) Metal bioremediation through growing cells. Environ Int 30:261–278

    PubMed  CAS  CrossRef  Google Scholar 

  • Malstrom J, Christophersen C, Barrero AF, Oltra JE, Justicia J, Rosales A (2002) Bioactive metabolites from a marine derived strain of the fungus Emericella variecolor. J Nat Prod 65:364–367

    CrossRef  CAS  Google Scholar 

  • Motti CA, Bourne DG, Burnell JN, Doyle JR, Haines DS, Liptrot CH, Llewellyn LE, Ludke S, Muirhead A, Tapiolas DM (2007) Screening marine fungi for inhibitors of the C4 plant enzyme pyruvate phosphate dikinase: unguinol as a potential novel herbicide candidate. Appl Environ Microbiol 73:1921–1927

    PubMed  CAS  CrossRef  Google Scholar 

  • Mtui G, Nakamura Y (2004) Lignin-degrading enzymes from mycelial cultures of basidiomycetes fungi isolated in Tanzania. J Chem Eng Jpn 37:113–118

    CAS  CrossRef  Google Scholar 

  • Nagano N, Matsui S, Kuramura T, Taoka Y, Honda D, Hayashi M (2011) The distribution of extracellular cellulase activity in marine eukaryotes, thraustochytrids. Mar Biotechnol 13:133–136

    PubMed  CAS  CrossRef  Google Scholar 

  • Namikoshi M, Kobayashi H, Yoshimoto T, Meguro S, Akano K (2000) Isolation and characterization of bioactive metabolites from marine-derived filamentous fungi collected from tropical and sub-tropical coral reefs. Chem Pharm Bull 48:1452–1457

    PubMed  CAS  CrossRef  Google Scholar 

  • Nielsen J, Nielsen PH, Frisvad JC (1999) Fungal depside, guisinol, from a marine derived strain of Emericella unguis. Phytochemistry 50:263–265

    CAS  CrossRef  Google Scholar 

  • Norse EA (1993) Global marine biological diversity: a strategy for building conservation into decision making. Island Press, Washington, DC, p 383

    Google Scholar 

  • Passarini MZR, Rodrigues MVN, da Silva M, Sette LD (2011) Marine-derived filamentous fungi and their potential application for polycyclic aromatic hydrocarbon bioremediation. Mar Poll Bull 62:364–370

    CAS  CrossRef  Google Scholar 

  • Peng RH, Xiong AS, Xue Y, Fu XY, Gao F, Zhao W, Tian YS, Yao QH (2008) Microbial biodegradation of polyaromatic hydrocarbons. FEMS Microbiol Rev 32:927–955

    PubMed  CAS  CrossRef  Google Scholar 

  • Petrini O, Sieber TN, Toti L, Vivet O (1992) Ecology, metabolite production and substrate utilisation in endophytic fungi. Nat Toxins 1:185–196

    PubMed  CAS  CrossRef  Google Scholar 

  • Pisano MA, Mihalik JA, Catalano GR (1964) Gelatinase activity by marine fungi. Appl Microbiol 12:470–474

    PubMed  CAS  Google Scholar 

  • Pointing SB, Hyde KD (eds) (2001) BioExploitation of filamentous fungi. Fungal Divers Res Ser 6:1–467

    Google Scholar 

  • Pointing SB, Vrijmoed LLP, Jones EBG (1998) A qualitative assessment of lignocellulose degrading activity in marine fungi. Bot Mar 41:290–298

    CrossRef  Google Scholar 

  • Raghukumar S (2002) Ecology of the marine protists, the Labyrinthulomycetes (Thraustochytrids and Labyrinthulids). Eur J Protistol 38:127–145

    CrossRef  Google Scholar 

  • Raghukumar S (2004) The role of fungi in marine detrital processes. In: Ramaiah N (ed) Marine microbiology: facets and opportunities. NIO, Dona Paula, Goa, India, pp 125–140

    Google Scholar 

  • Raghukumar C (2008a) Marine fungal biotechnology: an ecological perspective. Fungal Divers 31:19–35

    Google Scholar 

  • Raghukumar S (2008b) Thraustochytrid marine protists: production of PUFAs and other emerging technologies. Mar Biotechnol 10:631–640

    PubMed  CAS  CrossRef  Google Scholar 

  • Raghukumar C, Nagarkar S, Raghukumar S (1992) Association of thraustochytrids and fungi with living marine algae. Mycol Res 96:542–546

    CrossRef  Google Scholar 

  • Raghukumar C, Raghukumar S, Chinnaraj S, Chandramohan D, DeSouza TM, Reddy CA (1994) Laccase and other lignocellulose modifying enzymes of marine fungi isolated from the coast of India. Bot Mar 37:515–523

    CAS  CrossRef  Google Scholar 

  • Raghukumar C, D’Souza TM, Thorn RG, Reddy CA (1999) Lignin-modifying enzymes of Flavodon flavus, a Basidiomycete isolated from a coastal marine environment. Appl Environ Microbiol 65:2103–2111

    PubMed  CAS  Google Scholar 

  • Raghukumar C, Raghukumar S, Sheelu G, Gupta SM, Nagender Nath B, Rao BR (2004) Buried in time: culturable fungi in a deep-sea sediment core from the Chagos Trench, Indian Ocean. Deep-sea Res I 51:1759–1768

    CAS  Google Scholar 

  • Raghukumar C, Mohandass C, Cardigos F, DeCosta PM, Santos RS, Colaco A (2008) Assemblage of benthic diatoms and culturable heterotrophs in shallow-water hydrothermal vent of the D. Joao de Castro Seamount; Azores in the Atlantic Ocean. Curr Sci 95:1715–1723

    CAS  Google Scholar 

  • Raghukumar C, Damare SR, Singh P (2010) A review on deep-sea fungi: occurrence, diversity and adaptations. Bot Mar 53:479–492

    CrossRef  Google Scholar 

  • Rahman KSM, Thahira-Rahman J, McClean S, Marchant R, Banat IM (2002) Rhamnolipid biosurfactants production by strains of Pseudomonas aeruginosa using low cost raw materials. Biotechnol Prog 18:1277–1281

    PubMed  CAS  CrossRef  Google Scholar 

  • Raikar MT, Raghukumar S, Vani V, David JJ, Chandramohan D (2001) Thraustochytrid protists degrade hydrocarbons. Ind J Mar Sci 30:139–145

    CAS  Google Scholar 

  • Ravelet C, Krivobok S, Sage L, Steiman R (2000) Biodegradation of pyrene by sediment fungi. Chemosphere 40:557–563

    PubMed  CAS  CrossRef  Google Scholar 

  • Ray GC (1988) Ecological diversity in coastal zones and oceans. In: Willson EO (ed) Biodiversity. National Academy Press, Washington, DC, pp 36–50

    Google Scholar 

  • Rehman A, Farooq H, Hasnain H (2008) Biosorption of copper by yeast, Lodderomyces elongisporus, isolated from industrial effluents: its potential use in wastewater treatment. J Basic Microbiol 48:195–201

    PubMed  CAS  CrossRef  Google Scholar 

  • Rowley DC, Kelly S, Kauffman CA, Jensen PR, Fenical W (2003) Halovirs A-E, new antiviral agents from a marine-derived fungus of the genus Scytalidium. Bioorg Med Chem 11:4263–4274

    PubMed  CAS  CrossRef  Google Scholar 

  • Sadler IH, Simpson TJ (1989) The determination by NMR methods of the structure and stereochemistry of astellatol, a new and unusual sesterterpene. J Chem Soc Chem Commun 21:1602–1604

    CrossRef  Google Scholar 

  • Sathe-Pathak V, Raghukumar S, Raghukumar C, Sharma S (1993) Thraustochytrid and fungal component of marine detritus. 1. Field studies on decomposition of the brown alga Sargassum cinereum J. Ag. Indian J Mar Sci 22:159–167

    CAS  Google Scholar 

  • Schaumann K, Weide G (1990) Enzymatic degradation of alginate by marine fungi. Hydrobiologia 205:589–596

    CrossRef  Google Scholar 

  • Schlingmann G, Milne L, Williams DR, Carter GT (1998) Cell wall active antifungal compounds produced by the marine fungus Hypoxylon oceanicum LL-15 G256. II. Isolation and structure determination. J Antibiot 51:303–316

    PubMed  CAS  Google Scholar 

  • Sette LD, Oliveira VM, Rodrigues MFA (2008) Microbial lignocellulolytic enzymes: industrial applications and future perspectives. Microbiol Aus 29:18–20

    Google Scholar 

  • Sharma S, Raghukumar C, Raghukumar S, Sathe-Pathak V, Chandramohan D (1994) Thraustochytrid and fungal component of marine detritus II. Laboratory studies on decomposition of the brown alga Sargassum cinereum J. Ag. J Exp Mar Biol Ecol 175:227–242

    CrossRef  Google Scholar 

  • Shigemori H, Komatsu K, Mikami Y, Kobayashi J (1999) Seragakinone A, a new pentacyclic metabolite from a marine derived fungus. Tetrahedron 55:14925–14930

    CAS  CrossRef  Google Scholar 

  • Shoun H, Kim DH, Uchiyama H, Sugiyama J (1992) Denitrification by fungi. FEMS Microbiol Lett 94:277–282

    CAS  CrossRef  Google Scholar 

  • Shukla GS, Singhal RL (1984) The present status of biological effects of toxic metals in the environment: lead, cadmium, and manganese. Can J Physiol Pharmacol 62(8):1015–1031

    PubMed  CAS  CrossRef  Google Scholar 

  • Singh P, Raghukumar C, Verma P, Shouche Y (2010) Phylogenetic diversity of culturable fungi from the deep-sea sediments of the Central Indian Basin and their growth characteristics. Fungal Divers 40:89–102

    CrossRef  Google Scholar 

  • Singh P, Raghukumar C, Verma P, Shouche Y (2011) Fungal community analysis in the deep-sea sediments of the Central Indian Basin by culture-independent approach. Microb Ecol 61:507–517

    PubMed  CAS  CrossRef  Google Scholar 

  • Smith GW, Nagelkerken IA, Ritchie KB (1996) Caribbean sea-fan mortalities. Nature 383:487

    CAS  CrossRef  Google Scholar 

  • Spatafora JW, Volkmann-Kohlmeyer B, Kohlmeyer J (1998) Independent terrestrial origins of the Halosphaeriales (marine Ascomycota). Am J Bot 85:1569–1580

    PubMed  CAS  CrossRef  Google Scholar 

  • Sridhar KR (2005) Diversity of fungi in mangrove ecosystems. In: Satyanarayana T, Johri BN (eds) Microbial diversity: current perspectives and potential applications. I.K. International Pvt. Ltd., New Delhi, pp 129–147

    Google Scholar 

  • Sun HH, Mao WJ, Chen Y, Guo SD, Li HY, Qi XH, Chen YL, Xu J (2009) Isolation, chemical characteristics and antioxidant properties of the polysaccharides from marine fungus Penicillium sp. F23-2. Carbohydr Polym 78:117

    CAS  CrossRef  Google Scholar 

  • Suryanarayanan TS, Thirunavukkarasu N, Govindarajalu MB, Sasse F, Jansen R, Murali TS (2009) Fungal endophytes - Mycosphere and bioprospecting. Fung Biol Rev 23:9–19

    Google Scholar 

  • Szaniszlo PJ, Carl Wirsen JR, Mitchell R (1968) Production of a capsular polysaccharide by a marine filamentous fungus. J Bacteriol 96:1474–1483

    PubMed  CAS  Google Scholar 

  • Taboski MAS, Rand TG, Piorko A (2005) Lead and cadmium uptake in the marine fungi Corollospora lacera and Monodictys pelagica. FEMS Microbiol Ecol 53:445–453

    PubMed  CAS  CrossRef  Google Scholar 

  • Thirunavukkarasu N, Suryanarayanan TS, Murali TS, Ravishankar JP, Gummadi SN (2011) l-Asparaginase from marine derived fungal endophytes of seaweeds. Mycosphere (Online). J Fung Biol 2(2):147–155

    Google Scholar 

  • Toledo-Hernández C, Sabat AM, Zuluaga Montero A (2007) Density, size structure and aspergillosis prevalence in Gorgonia ventalina at six localities in Puerto Rico. Mar Biol 152:527–535

    CrossRef  Google Scholar 

  • Toske SG, Jensen PR, Kauffman CA, Fenical W (1998) Aspergillamidales A and B: Modified cytotoxic tripeptides produced by a marine fungus of the genus Aspergillus. Tetrahedron 54:13459–13466

    Google Scholar 

  • Verma AK, Raghukumar C, Verma P, Shouche YS, Naik CG (2010) Four marine-derived fungi for bioremediation of raw textile mill effluents. Biodegradation 21:217–233

    PubMed  CAS  CrossRef  Google Scholar 

  • Verma AK, Raghukumar C, Naik CG (2011) A novel hybrid technology for remediation of molasses-based raw effluents. Bioresour Technol 102:2411–2418

    PubMed  CAS  CrossRef  Google Scholar 

  • Weber D (2009) Endophytic fungi, occurence and metabolites. In: Anke T, Weber D (eds) The Mycota XV Physiology and Genetics. Springer-Verlag, Berlin, pp 153–195

    Google Scholar 

  • Wegley L, Edwards R, Rodriguez-Brito B, Liu H, Rohwer F (2007) Metagenomic analysis of the microbial community associated with the coral Porites astreoides. Environ Microbiol 9:2707–2719

    PubMed  CAS  CrossRef  Google Scholar 

  • Zalar P, de Hoog GS, Gunde-Cimerman N (1999a) Ecology of halotolerant dothideaceous black yeasts. Stud Mycol 43:38–48

    Google Scholar 

  • Zalar P, de Hoog GS, Gunde-Cimerman N (1999b) Trimmatostroma salinum, a new species from hypersaline water. Stud Mycol 43:57–62

    Google Scholar 

  • Zinjarde SS, Pant A (2002) Emulsifier from a tropical marine yeast, Yarrowia lipolytica NCIM 3589. J Basic Microbiol 42:67–73

    PubMed  CrossRef  Google Scholar 

  • Zvyagintseva TN, Elyakova LA, Isakov VV (1995) The enzymatic transformations of laminarans in 1fi3; 1fi6-b-D-glucans with immunostimulating activity. Bioorg Khim 21:218–225

    CAS  Google Scholar 

Download references

Acknowledgements

The first author is thankful to Director, NIO, for the support for the research work. The second author wishes to acknowledge UGC for the Research Fellowship provided to carry out the work. This is NIO’s contribution number 5012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir Damare .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Damare, S., Singh, P., Raghukumar, S. (2012). Biotechnology of Marine Fungi. In: Raghukumar, C. (eds) Biology of Marine Fungi. Progress in Molecular and Subcellular Biology(), vol 53. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23342-5_14

Download citation