Biotechnology of Marine Fungi

  • Samir Damare
  • Purnima Singh
  • Seshagiri Raghukumar
Part of the Progress in Molecular and Subcellular Biology book series (PMSB, volume 53)


Filamentous fungi are the most widely used eukaryotes in industrial and pharmaceutical applications. Their biotechnological uses include the production of enzymes, vitamins, polysaccharides, pigments, lipids and others. Marine fungi are a still relatively unexplored group in biotechnology. Taxonomic and habitat diversity form the basis for exploration of marine fungal biotechnology. This review covers what is known of the potential applications of obligate and marine-derived fungi obtained from coastal to the oceanic and shallow water to the deep-sea habitats. Recent studies indicate that marine fungi are potential candidates for novel enzymes, bioremediation, biosurfactants, polysaccharides, polyunsaturated fatty acids and secondary metabolites. Future studies that focus on culturing rare and novel marine fungi, combined with knowledge of their physiology and biochemistry will provide a firm basis for marine mycotechnology.


Coral Reef Endophytic Fungus Marine Fungus Marine Microorganism Terrestrial Fungus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The first author is thankful to Director, NIO, for the support for the research work. The second author wishes to acknowledge UGC for the Research Fellowship provided to carry out the work. This is NIO’s contribution number 5012.


  1. Abe F, Miura T, Nagahama T, Inoue A, Usami R, Horikoshi K (2001) Isolation of a highly copper-tolerant yeast, Cryptococcus sp., from the Japan Trench and the induction of superoxide dismutase activity by Cu2+. Biotechnol Lett 23:2027–2034CrossRefGoogle Scholar
  2. Abe F, Minegishi H, Miura T, Nagahara T, Usami R, Horikoshi K (2006) Characterization of cold- and high-pressure-active polygalacturonases from a deep-sea yeast, Cryptococcus liquefaciens strain N6. Biosci Biotechnol Biochem 70:296–299PubMedCrossRefGoogle Scholar
  3. Ahearn DG, Meyers SP (1972) The role of fungi in the decomposition of hydrocarbons in the marine environment. In: Walters AH, Vander Hueck, Plas EH (eds) Biodeterioration of materials. Applied Science, London, pp 12–18Google Scholar
  4. Alvi KA, Casey A, Nair BG (1998) Pulchellalactam: a CD45 protein tyrosine phosphatase inhibitor from the marine fungus Corollospora pulchella. J Antibiot 51:515–517PubMedGoogle Scholar
  5. Babich H, Stotzky G (1983) Nickel toxicity to estuarine/marine fungi and its amelioration by magnesium in sea water. Water Air Soil Poll 19:193–202Google Scholar
  6. Banat IM, Makkar RS, Cameotra SS (2000) Potential commercial applications of microbial surfactants. Appl Microbiol Biot 53:495–508CrossRefGoogle Scholar
  7. Bass D, Howe A, Brown N, Barton H, Demidova M, Michelle H, Li L, Sanders H, Watkinson SC, Willcock S, Richards TA (2007) Yeast forms dominate fungal diversity in the deep oceans. Proc R Soc B 22(274):3069–3077CrossRefGoogle Scholar
  8. Belofsky GN, Anguera M, Jensen PR, Fenical W, Kock M (2000) Oxepinamides A–C and fumiquinazolines H–I: bioactive metabolites from a marine isolate of a fungus of the genus Acremonium. Eur J Chem 6:1355–1360CrossRefGoogle Scholar
  9. Bennett JW (1998) Mycotechnology: the role of fungi in biotechnology. J Biotechnol 11:101–107CrossRefGoogle Scholar
  10. Bhadury P, Mohammad BT, Wright C (2006) The current status of natural products from marine fungi and their potential as anti-infective agents. J Ind Microbiol Biotechnol 33:325–337PubMedCrossRefGoogle Scholar
  11. Bhatnagar I, Kim Se-Kwon (2010) Immense essence of excellence: marine microbial bioactive compounds. Mar Drugs 8:2673–2701PubMedCrossRefGoogle Scholar
  12. Bishnoi NR, Garima A (2005) Fungus – an alternative for bioremediation of heavy metal containing wastewater: a review. J Sci Ind Res 64:93–100Google Scholar
  13. Blomberg A, Adler L (1992) Physiology of osmotolerance in fungi. Adv Microb Physiol 33:145–212PubMedCrossRefGoogle Scholar
  14. Bongiorni L, Pusceddu A, Danovaro R (2005) Enzymatic activities of epiphytic and benthic thraustochytrids involved in organic matter degradation. Aquat Microb Ecol 41:299–305CrossRefGoogle Scholar
  15. Brar SK, Verma M, Surampalli RY, Misra K, Tyagi RD, Meunier N, Blais JF (2006) Bioremediation of Hazardous Wastes – A Review. J Hazard Toxic Radioactive Wastes 10:59–72CrossRefGoogle Scholar
  16. Brauers G, Edrada RA, Ebel R, Proksch P, Wray V, Berg A, Gräfe U, Schächtele C, Totzke F, Finkenzeller G, Marme D, Kraus J, Münchbach M, Michel M, Bringmann G, Schaumann K (2000) Two new betaenone derivatives and three new anthraquinones from the sponge-associated fungus Microsphaeropsis sp. J Nat Prod 63:739–745PubMedCrossRefGoogle Scholar
  17. Bringmann G, Gulder TA, Lang G, Schmitt S, Stöhr R, Wiese J, Nagel K, Imhoff JF (2007) Large-scale biotechnological production of the antileukemic marine natural product sorbicillactone A. Mar Drugs 5:23–30PubMedCrossRefGoogle Scholar
  18. Burgaud G, Calvez T, Arzur D, Vandenkoornhuyse P, Barbier G (2009) Diversity of culturable marine filamentous fungi from deep-sea hydrothermal vents. Environ Microbiol 11:1588–1600PubMedCrossRefGoogle Scholar
  19. Capotorti G, Digianvincenzo P, Cesti P, Bernardi A, Guglielmetti G (2004) Pyrene and benzo(a)pyrene metabolism by an Aspergillus terreus strain isolated from a polycylic aromatic hydrocarbons polluted soil. Biodegradation 15:79–85PubMedCrossRefGoogle Scholar
  20. Chexal KK, Fouweather C, Holker JSE, Simpson TJ, Young K (1974) Structure of shamixanthone and tajixanthone, metabolites of Aspergillus variecolor. J Chem Soc Perkin Trans 1:1584–1593CrossRefGoogle Scholar
  21. Cooke RC, Whipps JM (1993) Ecophysiology of fungi. Blackwell Scientific Publication, London, pp 324–345Google Scholar
  22. Cooney JJ, Doolittle MM, Grahl-Nielsen O, Haaland IM, Kirk PW (1993) Comparison of fatty acids of marine fungi using multivariate statistical analysis. J Ind Microbiol 12:373–378CrossRefGoogle Scholar
  23. D’Souza-Ticlo D, Verma AK, Mathew M, Raghukumar C (2006) Effect of nutrient nitrogen on laccase production, its isozyme pattern and effluent decolorization by the fungus NIOCC No. 2a, isolated from mangrove wood. Ind J Mar Sci 35:364–372Google Scholar
  24. Daferner M, Anke T, Sterner O (2002) Zopfiellamides A and B, antimicrobial pyrrolidinone derivatives from the marine fungus Zopfiella latipes. Tetrahedron 58:7781–7784CrossRefGoogle Scholar
  25. Damare S (2007) Deep-sea fungi: occurrence and adaptations. PhD thesis, Goa University, IndiaGoogle Scholar
  26. Damare S, Raghukumar C (2008) Fungi and macroaggregation in deep-sea sediments. Microb Ecol 27:168–177CrossRefGoogle Scholar
  27. Damare S, Raghukumar C, Raghukumar S (2006a) Fungi in deep-sea sediments of the Central Indian Basin. Deep-Sea Res I 53:14–27CrossRefGoogle Scholar
  28. Damare S, Raghukumar C, Muraleedharan UD, Raghukumar S (2006b) Deep-sea fungi as a source of alkaline and cold-tolerant proteases. Enzyme Microbiol Technol 39:172–181CrossRefGoogle Scholar
  29. Daniel I, Oger P, Winter R (2006) Origins of life and biochemistry under high-pressure conditions. Chem Soc Rev 35:858–875PubMedCrossRefGoogle Scholar
  30. Davidson BS (1995) New dimensions in natural products research: cultured marine microorganisms. Curr Opin Biotechnol 6:284–291CrossRefGoogle Scholar
  31. Davis TA, Volesky B, Mucci A (2003) A review of biochemistry of heavy metal biosorption by brown algae. Water Res 37:4311–4330PubMedCrossRefGoogle Scholar
  32. Dermont G, Bergeron M, Mercier G, Richer-Lafleche M (2008) Soil washing for metal removal: a review of physical/chemical technologies and field applications. J Hazard Mater 152:1–31PubMedCrossRefGoogle Scholar
  33. Dighton J (2003) Fungi in ecosystem processes. Marcel Dekker Inc., New YorkCrossRefGoogle Scholar
  34. Ebel R (2006) Secondary metabolites from marine-derived fungi. In: Proksch P, Müller WEG (eds) Frontiers in marine biotechnology. Horizon Bioscience, England, pp 73–143Google Scholar
  35. Edgcomb VP, Kysela DT, Teske A, de Vera GA (2002) Benthic eukaryotic diversity in the Guaymas Basin hydrothermal vent environment. Proc Natl Acad Sci U S A 99:7658–7662PubMedCrossRefGoogle Scholar
  36. Eriksson K-E, Blanchette RA, Ander P (1990) Microbial and enzymatic degradation of wood and wood components. Springer, Berlin, p 407Google Scholar
  37. Fan KW, Chen F (2007) Production of high-value products by marine microalgae thraustocytrids. In: Yang S-T (ed) Bioprocessing for value-added products from renewable resources. New Technologies and Applications, Amsterdam, Elsevier, pp 293–324CrossRefGoogle Scholar
  38. Fenical W, Jensen PR (1993) Marine microorganisms: a new biomedical resource. In: Attaway DH, Zaborsky OR (eds) Marine biotechnology, vol 1. Plenum Press, New York, pp 419–457Google Scholar
  39. Frolova GM, Sil’chenko AS, Pivkin MV, Mikhailov VV (2001) Amylases of the fungus Aspergillus flavipes associated with Fucus evanescens. Appl Biochem Microbiol 38:134–138CrossRefGoogle Scholar
  40. Gallo ML, Seldes AM, Cabrera GM (2004) Antibiotic long-chain and α, β-unsaturated aldehydes from the culture of the marine fungus Cladosporium sp. Biochem Syst Ecol 32:545–551CrossRefGoogle Scholar
  41. Gao S, Li X, Du F, Li C, Proksch P, Wang B (2011) Secondary metabolites from a marine-derived endophytic fungus Penicillium chrysogenum QEN-24 S. Mar Drugs 9:59–70CrossRefGoogle Scholar
  42. GESAMP (IMO/FAO/UNESCO-IOC/UNIDO/WMO/IAEA/UN/UNEP Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection) (2007) Estimates of oil entering the marine environment from sea-based activities. Rep Stud GESAMP No. 75, 96 ppGoogle Scholar
  43. Gisbert C, Rus AM, Bolarín MC, López-Coronado JM, Arrillaga I, Montesinos C, Caro M, Serrano R, Moreno V (2000) The yeast HAL1 gene improves salt tolerance of transgenic tomato. Plant Physiol 123:393–402PubMedCrossRefGoogle Scholar
  44. Godzeski CWJ, Kobayashi J, Ishibashi M (1968) Bioactive metabolites of symbiotic marine microorganisms. Chem Rev 93:1753–1769Google Scholar
  45. Grant WD, Atkinson M, Burke B, Molly C (1996) Chitinolysis by the marine ascomycete Corollospora maritima Werdermann: purification and properties of chitobiosidase. Bot Mar 39:177–186CrossRefGoogle Scholar
  46. Gunatilaka AAL (2006) Natural products from plant-associated microorganisms: distribution, structural diversity, bioactivity and implications of their occurrence. J Nat Prod 69:509–526PubMedCrossRefGoogle Scholar
  47. Gunde-Cimerman N, Zalar P, de Hoog S, Plemenitas A (2000) Hypersaline waters in saltern-natural ecological niches for black halophilic yeast. FEMS Microbiol Ecol 32:235–240Google Scholar
  48. Hamman S (2004) Bioremediation capabilities of white rot fungi. BI570 – review article SpringGoogle Scholar
  49. Hensens OD, Zink D, Williamson JM, Lotti VJ, Chang RSL, Goetz MA (1991) Variecolin, a sesterterpenoid of novel skeleton from Aspergillus variecolor MF138. J Org Chem 56:3399–3403CrossRefGoogle Scholar
  50. Hicks RE, Newell SY (1984) The growth of bacteria and the fungus Phaeosphaeriatypharum (Desm.) Holm (Eumycota: Ascomycotina) in salt-marsh microcosms in the presence and absence of mercury. J Exp Mar Biol Ecol 78:143–155CrossRefGoogle Scholar
  51. Holler U (1999) Isolation, biological activity and secondary metabolite investigations of marine derived fungi and selected host sponges. PhD thesis, Universitat Carolo-WilhelminaGoogle Scholar
  52. Hopmann C, Knauf MA, Weithmann K, Wink J (2001) Aventis Pharma Deutschland GmbH, Germany, 2001. Preparation of Stromemycins as stromelysin inhibitors. PCT International Patent Application No. WO 01/44264 A2Google Scholar
  53. Horrocks LA, Yeo YK (1999) Health benefits of docosahexaenoic acid (DHA). Pharmacol Res 40:211–225PubMedCrossRefGoogle Scholar
  54. Hou-jin L, Yong-tong C, Yun-yun C, Chi-keung C, Wen-jian L (2010) Metabolites of marine fungus Aspergillus sp. collected from soft coral Sarcophyton tortuosum. Chem Res Chinese U 26:415–419Google Scholar
  55. Hwang Y, Rowley D, Rhodes D, Gertsch J, Fenical W, Bushman F (1999) Mechanism of inhibition of a poxvirus topoisomerase by the marine natural product sansalvamide A. Mol Pharmacol 55:1049–1053PubMedGoogle Scholar
  56. Jebaraj CS, Raghukumar C (2009) Anaerobic denitrification in fungi from the coastal marine sediments off Goa, India. Mycol Res 113:100–109CrossRefGoogle Scholar
  57. Jennings DH (1986) Fungal growth in the sea. In: Moss ST (ed) The biology of marine fungi. Cambridge University Press, London, pp 1–10Google Scholar
  58. Jiang Z, Barret MO, Boyd KG, Adams DR, Boyd ASF, Burgess JG (2002) JM47, a cyclic tetrapeptide HC-toxin analogue from a marine Fusarium species. Phytochemistry 60:33–38PubMedCrossRefGoogle Scholar
  59. Jones EBG, Sakayaroj J, Suetrong S, Somrithipol S, Pang KL (2009) Classification of marine Ascomycota, anamorphic taxa and Basidiomycota. Fungal Divers 35:1–189Google Scholar
  60. Junghanns C, Moeder M, Krauss G, Martin C, Schlosser D (2005) Degradation of the xenoestrogen nonylphenol by aquatic fungi and their laccases. Microbiology 151:45–57PubMedCrossRefGoogle Scholar
  61. Kadukova J, Vircikova E (2005) Comparison of differences between copper bioaccumulation and biosorption. Environ Int 31:227–232PubMedCrossRefGoogle Scholar
  62. Kanchana R, Muraleedharan U, Raghukumar S (2011) Alkaline lipase activity from the marine protists, thraustochytrids. World J Microbiol Biotechnol. doi: doi:10.1007/s11274-011-0676-8
  63. Karageorgis AP, Anagnostou CL, Kaberi H (2005) Geochemistry and mineralogy of the NW Aegean Sea surface sediments: implications for river runoff and anthropogenic impact. Appl Geochem 20:69–88CrossRefGoogle Scholar
  64. Karanth NGK, Deo PG, Veenanadig NK (1999) Microbial production of biosurfactants and their importance. Curr Sci 77:116–123Google Scholar
  65. Kawahara N, Nozawa K, Nakajima S, Kawai K (1988) Isolation and structure determination of arugosin E from Aspergillus silvaticus and cycloisoemericellin from Emericellastriata. J Chem Soc, Perkin Trans 1:907–911CrossRefGoogle Scholar
  66. Keerthi TR, Suresh PV, Sabu A, Rajeevkumar S, Chandrasekaran M (1999) Extracellular production of l-glutaminase by alkalophilic Beauveria bassiana BTMF S10 isolated from marine sediment. World J Microbiol Biotechnol 15:751–752CrossRefGoogle Scholar
  67. Kiiskinen LL, Rättö M, Kruus K (2004) Screening for novel laccase producing microbes. J Appl Microbiol 97:640–646PubMedCrossRefGoogle Scholar
  68. Kiran GS, Hema TA, Gandhimathi R, Selvin J, Thomas TA, Rajeetha Ravji T, Natarajaseenivasan K (2009) Optimization and production of a biosurfactant from the sponge-associated marine fungus Aspergillus ustus MSF3. Colloids Surf B Biointerfaces 73:250–256PubMedCrossRefGoogle Scholar
  69. Kobayashi J, Ishibashi M (1993) Bioactive metabolites of symbiotic marine microorganisms. Chem Rev 93:1753–1769CrossRefGoogle Scholar
  70. Koh LL, Goh NKC, Chou LM, Tan YW (2000) Chemical and physical defenses of Singapore gorgonians (Octocorallia: Gorgonacea). J Exp Mar Biol Ecol 251:103–115PubMedCrossRefGoogle Scholar
  71. Kohlmeyer J, Kohlmeyer E (1979) Marine mycology: the higher fungi. Academic Press, New York, 690Google Scholar
  72. Konishi M, Fukuoka T, Nagahama T, Morita T, Imura T, Kitamoto D, Hatada Y (2010) Biosurfactant-producing yeast isolated from Calyptogena soyoae (deep-sea cold-seep clam) in the deep sea. J Biosci Bioeng 110:169–175PubMedCrossRefGoogle Scholar
  73. Krivobok S, Miriouchkine E, Seigle-Murandi F, Benoit-Guyod JL (1998) Biodegradation of anthracene by soil fungi. Chemosphere 37:523–530PubMedCrossRefGoogle Scholar
  74. Kuhad RC, Singh A, Eriksson KEL (1997) Microorganisms and enzymes involved in the degradation of plant fiber cell walls. Adv Biochem Eng Biotechnol 57:47–125Google Scholar
  75. Kuznetsova TA, Smetanina OF, Afiyatullov SS, Pivkin MV, Denisenko VA, Elyakov GB (2001) The identification of fusidic acid, a steroidal antibiotic marine isolate of the fungus Stilbella aciculosa. Biochem Syst Ecol 29:873–874PubMedCrossRefGoogle Scholar
  76. Le Campion-Alsumard T, Golubic S, Priess K (1995) Fungi in corals: symbiosis or disease? Interaction between polyps and fungi causes pearl-like skeleton biomineralization. Mar Ecol Prog Ser 117:137–147CrossRefGoogle Scholar
  77. Lein W, Bornke F, Reindl A, Ehrhardt T, Stitt M, Sonnewald U (2004) Target-based discovery of novel herbicides. Curr Opin Plant Biol 7:219–225PubMedCrossRefGoogle Scholar
  78. Li X, Choi HD, Kang JS, Lee CO, Son BW (2003) New polyoxygenated farnesylcyclohexenones, deacetoxyyanuthone A and its hydro derivative from the marine-derived fungus Penicillium sp. J Nat Prod 66:1499–1500PubMedCrossRefGoogle Scholar
  79. Liberra K, Lindequist U (1995) Marine fungi-a prolific resource of biologically active natural products. Pharmazie 50:583–588PubMedGoogle Scholar
  80. Lin Y, Wu X, Feng S, Jiang G, Luo J, Zhou S, Vrijmoed LLP, Jones EBG, Krohn K, Steongröver K, Zsila F (2001) Five unique compounds: xyloketales from mangrove fungus Xylaria sp. from the South China Sea coast. J Org Chem 66:6252–6256PubMedCrossRefGoogle Scholar
  81. Lin W, Brauers G, Ebel R, Wray V, Berg A, Sudarsono PP (2003) Novel chromone derivatives from the fungus Aspergillus versicolor isolated from the marine sponge Xestospongia exigua. J Nat Prod 66:57–61PubMedCrossRefGoogle Scholar
  82. Lippmeier JC, Crawford KS, Owen CB, Rivas AA, Metz JG, Apt KE (2009) Characterization of both polyunsaturated fatty acid biosynthetic pathways in Schizochytrium sp. Lipids 44:221–230CrossRefGoogle Scholar
  83. Liu CH, Meng JC, Zou WX, Huang LL, Tang HQ, Tan RX (2002) Antifungal metabolite with a new carbon skeleton from Keissleriella sp YS4108, a marine filamentous fungus. Planta Med 68:363–365PubMedCrossRefGoogle Scholar
  84. Luo W, Vrijmoed LLP, Jones EBG (2005) Screening of marine fungi for lignocellulose-degrading enzyme activities. Bot Mar 48:379–386CrossRefGoogle Scholar
  85. Malik A (2004) Metal bioremediation through growing cells. Environ Int 30:261–278PubMedCrossRefGoogle Scholar
  86. Malstrom J, Christophersen C, Barrero AF, Oltra JE, Justicia J, Rosales A (2002) Bioactive metabolites from a marine derived strain of the fungus Emericella variecolor. J Nat Prod 65:364–367CrossRefGoogle Scholar
  87. Motti CA, Bourne DG, Burnell JN, Doyle JR, Haines DS, Liptrot CH, Llewellyn LE, Ludke S, Muirhead A, Tapiolas DM (2007) Screening marine fungi for inhibitors of the C4 plant enzyme pyruvate phosphate dikinase: unguinol as a potential novel herbicide candidate. Appl Environ Microbiol 73:1921–1927PubMedCrossRefGoogle Scholar
  88. Mtui G, Nakamura Y (2004) Lignin-degrading enzymes from mycelial cultures of basidiomycetes fungi isolated in Tanzania. J Chem Eng Jpn 37:113–118CrossRefGoogle Scholar
  89. Nagano N, Matsui S, Kuramura T, Taoka Y, Honda D, Hayashi M (2011) The distribution of extracellular cellulase activity in marine eukaryotes, thraustochytrids. Mar Biotechnol 13:133–136PubMedCrossRefGoogle Scholar
  90. Namikoshi M, Kobayashi H, Yoshimoto T, Meguro S, Akano K (2000) Isolation and characterization of bioactive metabolites from marine-derived filamentous fungi collected from tropical and sub-tropical coral reefs. Chem Pharm Bull 48:1452–1457PubMedCrossRefGoogle Scholar
  91. Nielsen J, Nielsen PH, Frisvad JC (1999) Fungal depside, guisinol, from a marine derived strain of Emericella unguis. Phytochemistry 50:263–265CrossRefGoogle Scholar
  92. Norse EA (1993) Global marine biological diversity: a strategy for building conservation into decision making. Island Press, Washington, DC, p 383Google Scholar
  93. Passarini MZR, Rodrigues MVN, da Silva M, Sette LD (2011) Marine-derived filamentous fungi and their potential application for polycyclic aromatic hydrocarbon bioremediation. Mar Poll Bull 62:364–370CrossRefGoogle Scholar
  94. Peng RH, Xiong AS, Xue Y, Fu XY, Gao F, Zhao W, Tian YS, Yao QH (2008) Microbial biodegradation of polyaromatic hydrocarbons. FEMS Microbiol Rev 32:927–955PubMedCrossRefGoogle Scholar
  95. Petrini O, Sieber TN, Toti L, Vivet O (1992) Ecology, metabolite production and substrate utilisation in endophytic fungi. Nat Toxins 1:185–196PubMedCrossRefGoogle Scholar
  96. Pisano MA, Mihalik JA, Catalano GR (1964) Gelatinase activity by marine fungi. Appl Microbiol 12:470–474PubMedGoogle Scholar
  97. Pointing SB, Hyde KD (eds) (2001) BioExploitation of filamentous fungi. Fungal Divers Res Ser 6:1–467Google Scholar
  98. Pointing SB, Vrijmoed LLP, Jones EBG (1998) A qualitative assessment of lignocellulose degrading activity in marine fungi. Bot Mar 41:290–298CrossRefGoogle Scholar
  99. Raghukumar S (2002) Ecology of the marine protists, the Labyrinthulomycetes (Thraustochytrids and Labyrinthulids). Eur J Protistol 38:127–145CrossRefGoogle Scholar
  100. Raghukumar S (2004) The role of fungi in marine detrital processes. In: Ramaiah N (ed) Marine microbiology: facets and opportunities. NIO, Dona Paula, Goa, India, pp 125–140Google Scholar
  101. Raghukumar C (2008a) Marine fungal biotechnology: an ecological perspective. Fungal Divers 31:19–35Google Scholar
  102. Raghukumar S (2008b) Thraustochytrid marine protists: production of PUFAs and other emerging technologies. Mar Biotechnol 10:631–640PubMedCrossRefGoogle Scholar
  103. Raghukumar C, Nagarkar S, Raghukumar S (1992) Association of thraustochytrids and fungi with living marine algae. Mycol Res 96:542–546CrossRefGoogle Scholar
  104. Raghukumar C, Raghukumar S, Chinnaraj S, Chandramohan D, DeSouza TM, Reddy CA (1994) Laccase and other lignocellulose modifying enzymes of marine fungi isolated from the coast of India. Bot Mar 37:515–523CrossRefGoogle Scholar
  105. Raghukumar C, D’Souza TM, Thorn RG, Reddy CA (1999) Lignin-modifying enzymes of Flavodon flavus, a Basidiomycete isolated from a coastal marine environment. Appl Environ Microbiol 65:2103–2111PubMedGoogle Scholar
  106. Raghukumar C, Raghukumar S, Sheelu G, Gupta SM, Nagender Nath B, Rao BR (2004) Buried in time: culturable fungi in a deep-sea sediment core from the Chagos Trench, Indian Ocean. Deep-sea Res I 51:1759–1768Google Scholar
  107. Raghukumar C, Mohandass C, Cardigos F, DeCosta PM, Santos RS, Colaco A (2008) Assemblage of benthic diatoms and culturable heterotrophs in shallow-water hydrothermal vent of the D. Joao de Castro Seamount; Azores in the Atlantic Ocean. Curr Sci 95:1715–1723Google Scholar
  108. Raghukumar C, Damare SR, Singh P (2010) A review on deep-sea fungi: occurrence, diversity and adaptations. Bot Mar 53:479–492CrossRefGoogle Scholar
  109. Rahman KSM, Thahira-Rahman J, McClean S, Marchant R, Banat IM (2002) Rhamnolipid biosurfactants production by strains of Pseudomonas aeruginosa using low cost raw materials. Biotechnol Prog 18:1277–1281PubMedCrossRefGoogle Scholar
  110. Raikar MT, Raghukumar S, Vani V, David JJ, Chandramohan D (2001) Thraustochytrid protists degrade hydrocarbons. Ind J Mar Sci 30:139–145Google Scholar
  111. Ravelet C, Krivobok S, Sage L, Steiman R (2000) Biodegradation of pyrene by sediment fungi. Chemosphere 40:557–563PubMedCrossRefGoogle Scholar
  112. Ray GC (1988) Ecological diversity in coastal zones and oceans. In: Willson EO (ed) Biodiversity. National Academy Press, Washington, DC, pp 36–50Google Scholar
  113. Rehman A, Farooq H, Hasnain H (2008) Biosorption of copper by yeast, Lodderomyces elongisporus, isolated from industrial effluents: its potential use in wastewater treatment. J Basic Microbiol 48:195–201PubMedCrossRefGoogle Scholar
  114. Rowley DC, Kelly S, Kauffman CA, Jensen PR, Fenical W (2003) Halovirs A-E, new antiviral agents from a marine-derived fungus of the genus Scytalidium. Bioorg Med Chem 11:4263–4274PubMedCrossRefGoogle Scholar
  115. Sadler IH, Simpson TJ (1989) The determination by NMR methods of the structure and stereochemistry of astellatol, a new and unusual sesterterpene. J Chem Soc Chem Commun 21:1602–1604CrossRefGoogle Scholar
  116. Sathe-Pathak V, Raghukumar S, Raghukumar C, Sharma S (1993) Thraustochytrid and fungal component of marine detritus. 1. Field studies on decomposition of the brown alga Sargassum cinereum J. Ag. Indian J Mar Sci 22:159–167Google Scholar
  117. Schaumann K, Weide G (1990) Enzymatic degradation of alginate by marine fungi. Hydrobiologia 205:589–596CrossRefGoogle Scholar
  118. Schlingmann G, Milne L, Williams DR, Carter GT (1998) Cell wall active antifungal compounds produced by the marine fungus Hypoxylon oceanicum LL-15 G256. II. Isolation and structure determination. J Antibiot 51:303–316PubMedGoogle Scholar
  119. Sette LD, Oliveira VM, Rodrigues MFA (2008) Microbial lignocellulolytic enzymes: industrial applications and future perspectives. Microbiol Aus 29:18–20Google Scholar
  120. Sharma S, Raghukumar C, Raghukumar S, Sathe-Pathak V, Chandramohan D (1994) Thraustochytrid and fungal component of marine detritus II. Laboratory studies on decomposition of the brown alga Sargassum cinereum J. Ag. J Exp Mar Biol Ecol 175:227–242CrossRefGoogle Scholar
  121. Shigemori H, Komatsu K, Mikami Y, Kobayashi J (1999) Seragakinone A, a new pentacyclic metabolite from a marine derived fungus. Tetrahedron 55:14925–14930CrossRefGoogle Scholar
  122. Shoun H, Kim DH, Uchiyama H, Sugiyama J (1992) Denitrification by fungi. FEMS Microbiol Lett 94:277–282CrossRefGoogle Scholar
  123. Shukla GS, Singhal RL (1984) The present status of biological effects of toxic metals in the environment: lead, cadmium, and manganese. Can J Physiol Pharmacol 62(8):1015–1031PubMedCrossRefGoogle Scholar
  124. Singh P, Raghukumar C, Verma P, Shouche Y (2010) Phylogenetic diversity of culturable fungi from the deep-sea sediments of the Central Indian Basin and their growth characteristics. Fungal Divers 40:89–102CrossRefGoogle Scholar
  125. Singh P, Raghukumar C, Verma P, Shouche Y (2011) Fungal community analysis in the deep-sea sediments of the Central Indian Basin by culture-independent approach. Microb Ecol 61:507–517PubMedCrossRefGoogle Scholar
  126. Smith GW, Nagelkerken IA, Ritchie KB (1996) Caribbean sea-fan mortalities. Nature 383:487CrossRefGoogle Scholar
  127. Spatafora JW, Volkmann-Kohlmeyer B, Kohlmeyer J (1998) Independent terrestrial origins of the Halosphaeriales (marine Ascomycota). Am J Bot 85:1569–1580PubMedCrossRefGoogle Scholar
  128. Sridhar KR (2005) Diversity of fungi in mangrove ecosystems. In: Satyanarayana T, Johri BN (eds) Microbial diversity: current perspectives and potential applications. I.K. International Pvt. Ltd., New Delhi, pp 129–147Google Scholar
  129. Sun HH, Mao WJ, Chen Y, Guo SD, Li HY, Qi XH, Chen YL, Xu J (2009) Isolation, chemical characteristics and antioxidant properties of the polysaccharides from marine fungus Penicillium sp. F23-2. Carbohydr Polym 78:117CrossRefGoogle Scholar
  130. Suryanarayanan TS, Thirunavukkarasu N, Govindarajalu MB, Sasse F, Jansen R, Murali TS (2009) Fungal endophytes - Mycosphere and bioprospecting. Fung Biol Rev 23:9–19Google Scholar
  131. Szaniszlo PJ, Carl Wirsen JR, Mitchell R (1968) Production of a capsular polysaccharide by a marine filamentous fungus. J Bacteriol 96:1474–1483PubMedGoogle Scholar
  132. Taboski MAS, Rand TG, Piorko A (2005) Lead and cadmium uptake in the marine fungi Corollospora lacera and Monodictys pelagica. FEMS Microbiol Ecol 53:445–453PubMedCrossRefGoogle Scholar
  133. Thirunavukkarasu N, Suryanarayanan TS, Murali TS, Ravishankar JP, Gummadi SN (2011) l-Asparaginase from marine derived fungal endophytes of seaweeds. Mycosphere (Online). J Fung Biol 2(2):147–155Google Scholar
  134. Toledo-Hernández C, Sabat AM, Zuluaga Montero A (2007) Density, size structure and aspergillosis prevalence in Gorgonia ventalina at six localities in Puerto Rico. Mar Biol 152:527–535CrossRefGoogle Scholar
  135. Toske SG, Jensen PR, Kauffman CA, Fenical W (1998) Aspergillamidales A and B: Modified cytotoxic tripeptides produced by a marine fungus of the genus Aspergillus. Tetrahedron 54:13459–13466Google Scholar
  136. Verma AK, Raghukumar C, Verma P, Shouche YS, Naik CG (2010) Four marine-derived fungi for bioremediation of raw textile mill effluents. Biodegradation 21:217–233PubMedCrossRefGoogle Scholar
  137. Verma AK, Raghukumar C, Naik CG (2011) A novel hybrid technology for remediation of molasses-based raw effluents. Bioresour Technol 102:2411–2418PubMedCrossRefGoogle Scholar
  138. Weber D (2009) Endophytic fungi, occurence and metabolites. In: Anke T, Weber D (eds) The Mycota XV Physiology and Genetics. Springer-Verlag, Berlin, pp 153–195Google Scholar
  139. Wegley L, Edwards R, Rodriguez-Brito B, Liu H, Rohwer F (2007) Metagenomic analysis of the microbial community associated with the coral Porites astreoides. Environ Microbiol 9:2707–2719PubMedCrossRefGoogle Scholar
  140. Zalar P, de Hoog GS, Gunde-Cimerman N (1999a) Ecology of halotolerant dothideaceous black yeasts. Stud Mycol 43:38–48Google Scholar
  141. Zalar P, de Hoog GS, Gunde-Cimerman N (1999b) Trimmatostroma salinum, a new species from hypersaline water. Stud Mycol 43:57–62Google Scholar
  142. Zinjarde SS, Pant A (2002) Emulsifier from a tropical marine yeast, Yarrowia lipolytica NCIM 3589. J Basic Microbiol 42:67–73PubMedCrossRefGoogle Scholar
  143. Zvyagintseva TN, Elyakova LA, Isakov VV (1995) The enzymatic transformations of laminarans in 1fi3; 1fi6-b-D-glucans with immunostimulating activity. Bioorg Khim 21:218–225Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Samir Damare
    • 1
  • Purnima Singh
    • 1
  • Seshagiri Raghukumar
    • 2
  1. 1.Marine Biotechnology LaboratoryCSIR-National Institute of OceanographyDona PaulaIndia
  2. 2.Myko Tech Private LimitedDona PaulaIndia

Personalised recommendations