Thraustochytrids, a Neglected Component of Organic Matter Decomposition and Food Webs in Marine Sediments

  • Lucia Bongiorni
Part of the Progress in Molecular and Subcellular Biology book series (PMSB, volume 53)


Decomposition of organic matter in marine sediments is a critical step influencing oxygen and carbon fluxes. In addition to heterotrophic bacteria and fungi, osmoheterotrophic protists may contribute to this process, but the extent of their role as decomposers is still unknown. Among saprophytic protists, the thraustochytrids have been isolated from different habitats and substrates. Recently, they have been reported to be particularly abundant in marine sediments characterized by the presence of recalcitrant organic matter such as seagrass and mangrove detritus where they can reach biomass comparable to those of other protists and bacteria. In addition, their capacity to produce a wide spectrum of enzymes suggests a substantial role of thraustochytrids in sedimentary organic decomposition. Moreover, thraustochytrids may represent a food source for several benthic microorganisms and animals and may be involved in the upgrading of nutrient-poor organic detritus. This chapter presents an overview on studies of thraustochytrids in benthic ecosystems and discusses future prospectives and possible methods to quantify their role in benthic food webs.


Marine Sediment Sediment Organic Matter Benthic Habitat Heterotrophic Nanoflagellates Heterotrophic Protist 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alongi DM (1993) Extraction of protists in aquatic sediments via density gradient centrifugation. In: Kemp PF, Sherr BF, Sherr EB, Cole JJ (eds) Aquatic microbial ecology. Lewis Publishers, Boca RatonGoogle Scholar
  2. Alonzo F, Virtue P, Nicol S, Nichols PD (2005) Lipids as trophic markers in Antarctic krill. III. Temporal changes in digestive gland lipid composition of Euphausia superba in controlled conditions. Mar Ecol Prog Ser 296:81–91CrossRefGoogle Scholar
  3. Arts MT, Ackman RG, Holub BJ (2001) “Essential fatty acids” in aquatic ecosystems: a crucial link between diet and human health and evolution. Can J Fish Aquat Sci 58(1):122–137CrossRefGoogle Scholar
  4. Bahnweg G (1979a) Studies on the physiology of Thraustochytriales I. Growth requirements and nitrogen nutrition of Thraustochytrium spp., Schizochytrium sp., Japonochytrium sp., Ulkenia spp., and Labyrinthuloides spp. Veröff Inst Meeresforsch Bremerh 17:245–268Google Scholar
  5. Bahnweg G (1979b) Studies on the physiology of Thraustochytriales II. Carbon nutrition of Thraustochytrium spp., Schizochytrium sp., Japonochytrium sp., Ulkenia spp., and Labyrinthuloides spp. Veröff Inst Meeresforsch Bremerh 17:269–273Google Scholar
  6. Berner RA (1989) Biogeochemical cycles of carbon and sulphur and their effects on atmospheric oxygen over Phanerozoic time. Palaeogeogr Palaeoclimatol Palaeoecol 73:97–112CrossRefGoogle Scholar
  7. Bongiorni L, Dini F (2002) Distribution and abundance of thraustochytrids in different Mediterranean coastal habitats. Aquat Microb Ecol 30:49–56CrossRefGoogle Scholar
  8. Bongiorni L, Pignataro L, Santangelo G (2004) Thraustochytrids (fungoid protists): an unexplored component of marine sediment microbiota. Sci Mar 68(1):43–48Google Scholar
  9. Bongiorni L, Mirto S, Pusceddu A, Danovaro R (2005a) Response of benthic protozoa and thraustochytrid protists to fish-farm impact in seagrass (Posidonia oceanica) and soft bottom sediments. Microb Ecol 50:268–276PubMedCrossRefGoogle Scholar
  10. Bongiorni L, Pusceddu A, Danovaro R (2005b) Enzymatic activities of epiphytic and benthic thraustochytrids involved in organic matter degradation. Aquat Microb Ecol 41:299–305CrossRefGoogle Scholar
  11. Boschker HTS, Middelburg JJ (2002) Stable isotopes and biomarkers in microbial ecology. FEMS Microbiol Ecol 40:85–95PubMedCrossRefGoogle Scholar
  12. Bremer GB, Talbot G (1995) Cellulolytic enzyme activity in the marine protist Schizochytrium aggregatum. Bot Mar 38:37–41CrossRefGoogle Scholar
  13. Damare V, Raghukumar S (2008) Abundance of thraustochytrids and bacteria in the equatorial Indian Ocean, with relation to transparent exopolymeric particles (TEPs). FEMS Microbiol Ecol 65(1):40–49PubMedCrossRefGoogle Scholar
  14. Danovaro R (2000) Benthic microbial loop and meiofaunal response to oil induced disturbance in coastal sediments: a review. Int J Environ Pollut 13:380–391CrossRefGoogle Scholar
  15. DeLong EF, Wickham GS, Pace NR (1989) Phylogenetic stains: ribosomal RNA-based probes for the identification of single cells. Science 243:1360–1363PubMedCrossRefGoogle Scholar
  16. Edgecomb VP, Kysela DT, Teske A, Gomez A, Sogin ML (2002) Benthic eukaryotic diversity in the Guaymas basin hydrothermal vent environment. Proc Natl Acad Sci U S A 99:7658–7662CrossRefGoogle Scholar
  17. Epstein SS (1995) Simultaneous enumeration of protozoa and micrometazoa from marine sandy sediments. Aquat Microb Ecol 9:219–227CrossRefGoogle Scholar
  18. Epstein SS (1997a) Microbial food webs in marine sediments. I. Trophic interactions and grazing rates in two tidal flat communities. Microb Ecol 34:188–198PubMedCrossRefGoogle Scholar
  19. Epstein SS (1997b) Microbial food webs in marine sediments. II. Seasonal changes in trophic interactions in sandy tidal flat communities. Microb Ecol 34:188–198PubMedCrossRefGoogle Scholar
  20. Fell JW, Findlay RH (1988) Biochemical indicators of microbial decomposition process in coastal and oceanic environments. In: Thompson MF, Tirmizi N (eds) Marine science of the Arabian Sea. American Institute of Sciences, WashingtonGoogle Scholar
  21. Fenchel T (1980) Relation between particle size selection and clearance in suspension feeding ciliates. Limnol Oceanogr 25:733–738CrossRefGoogle Scholar
  22. Gaertner A (1967) Marine niedere Pilze in Nordsee und Nordatlantik. Ber Dtsch Bot Ges 82:287–306Google Scholar
  23. Gaertner A (1968) Eine Methode des quantitativen Nachweises niederer mit Pollen koederbarer Pilze im Meerwasser und im Sediment. Veröff Inst Meeresforsch Bremerh 3:75–92Google Scholar
  24. Gaertner A (1982) Lower marine fungi from the Northwest African upwelling areas and from the Atlantic off Portugal. Meteor Forsch Ergebn D 34:9–30Google Scholar
  25. Gaertner A, Raghukumar S (1980) Ecology of thraustochytrids (lower marine fungi) in the Fladen Ground and other parts of the North Sea. I. Meteor Forsch Ergebn A 22:165–185Google Scholar
  26. Galluzzi L, Penna A, Bertozzini E, Vila M, Garces E, Magnani M (2004) Development of a real-time PCR assay for rapid detection and quantification of Alexandrium minutum (a dinoflagellate). Appl Environ Microbiol 70:1199–1206PubMedCrossRefGoogle Scholar
  27. Giovannoni SJ, DeLong EF, Olsen GJ, Pace NR (1988) Phylogenetic group-specific oligodeoxynucleotide probes for identification of single microbial cells. J Bacteriol 170:720–726PubMedGoogle Scholar
  28. Glöckner FO, Amann R, Alfreider A et al (1996) An in situ hybridization protocol for detection and identification of planktonic bacteria. Syst Appl Microbiol 19:403–406CrossRefGoogle Scholar
  29. Gooday GW (1990) The ecology of chitin degradation. Adv Microb Ecol 11:387–430Google Scholar
  30. Hedges JI, Keil RG (1995) Sedimentary organic matter preservation: an assessment and speculative synthesis. Mar Chem 49:81–115CrossRefGoogle Scholar
  31. Heiland R, Ulken A (1989) Untersuchungen zum Chitinabbau von niederen Pilzen. Nova Hedwigia 48:495–504Google Scholar
  32. Huang J, Aki T, Hachida K, Yokochi T, Kawamoto S, Shigeta S, Ono K, Suzuki O (2001) Profile of polyunsaturated fatty acids produced by Thraustochytrium sp. KK17-3. J Am Oil Chem Soc 78:605–610CrossRefGoogle Scholar
  33. Ishii K, Mussmann M, MacGregor BJ, Amann R (2004) An improved fluorescence in situ hybridization protocol for the identification of bacteria and archaea in marine sediment. FEMS Microbiol Ecol 50:203–212PubMedCrossRefGoogle Scholar
  34. Kimura H, Fukuba T, Naganuma T (1999) Biomass of thraustochytrid protists in coastal water. Mar Ecol Prog Ser 189:27–33CrossRefGoogle Scholar
  35. Liu Q, Allam B, Collier JL (2009) Quantitative real-time PCR assay for QPX (Thraustochytriidae), a parasite of the hard clam (Mercenaria mercenaria). Appl Environ Microbiol 75(14):4913–4918PubMedCrossRefGoogle Scholar
  36. Llobet-Brossa E, Rosselló-Mora R, Amann R (1998) Microbial community composition of Wadden sea sediments as revealed by fluorescence in situ hybridization. Appl Environ Microbiol 64:2691–2696PubMedGoogle Scholar
  37. Lyons MM, Smolowitz R, Dungan CF, Roberts SB (2006) Development of a real time quantitative PCR assay for the hard clam pathogen Quahog Parasite Unknown (QPX). Dis Aquat Organ 72:45–52PubMedCrossRefGoogle Scholar
  38. Manini E, Fiordelmondo C, Gambi C, Pusceddu A, Danovaro R (2003) Benthic microbial loop functioning in coastal lagoons: a comparative approach. Oceanol Acta 26:27–38CrossRefGoogle Scholar
  39. Mayer LM, Schick LL, Sawyer T, Plante CJ, Jumars PA, Self RL (1995) Bioavailable amino acids in sediments: a biomimetic, kinetics-based approach. Limnol Oceanogr 40:511–520CrossRefGoogle Scholar
  40. Middelburg JJ, Nieuwenhuize J, Van-Breugel P (1999) Black carbon in marine sediments. Mar Chem 65:245–252CrossRefGoogle Scholar
  41. Miller JD, Jones EBG (1983) Observations on the association of thraustochytrids marine fungi with decaying seaweed. Bot Mar 26:345–351CrossRefGoogle Scholar
  42. Mohapatra BR, Fukami K (2004) Production of aminopeptidase by marine heterotrophic nanoflagellates. Aquat Microb Ecol 34:129–137CrossRefGoogle Scholar
  43. Nagano N, Matsui S, Kuramura T, Taoka Y, Honda D, Hayashi M (2011) The distribution of extracellular cellulase activity in marine eukaryotes, thraustochytrids. Mar Biotechnol 13:133–136PubMedCrossRefGoogle Scholar
  44. Phillips NW (1984) Role of different microbes and substrates as potential supplies of specific essential nutrients to marine detritivores. Bull Mar Sci 35:283–298Google Scholar
  45. Place AR (1996) The biochemical basis and ecological significance of chitin digestion. In: Muzzarelli RAA (ed) Chitin enzymology, vol 2. Atec Edizioni, GrottammareGoogle Scholar
  46. Radajewski S, Ineson P, Parekh NP, Murrell JC (2000) Stable-isotope probing as a tool in microbial ecology. Nature 403:646–649PubMedCrossRefGoogle Scholar
  47. Raghukumar S (2002) Ecology of the marine protists, the Labyrinthulomycetes (thraustochytrids and labyrinthulids). Eur J Protistol 38:127–145CrossRefGoogle Scholar
  48. Raghukumar S (2008) Thraustochytrid marine protists: production of PUFAs and other emerging technologies. Mar Biotechnol 10(6):631–640PubMedCrossRefGoogle Scholar
  49. Raghukumar S, Balasubramanian R (1991) Occurrence of thraustochytrids fungi in coral and coral mucus. Indian J Mar Sci 20:176–181Google Scholar
  50. Raghukumar S, Gaertner A (1980) Ecology of the thraustochytrids (lower marine fungi) in the Falden Ground and other parts of the North Sea II. Veröff Inst Meeresforsh Bremerh 18:289–308Google Scholar
  51. Raghukumar S, Raghukumar C (1999) Thraustochytrid fungoid protists in faecal pellets of the tunicate Pagea confoederata, their tolerance to deep-sea conditions and implication in degradation processes. Mar Ecol Prog Ser 190:133–140CrossRefGoogle Scholar
  52. Raghukumar S, Schaumann K (1993) An epifluorescence microscope method for direct detection of and enumeration of the fungilike marine protists: the thraustochytrids. Limnol Oceanogr 38(1):182–187CrossRefGoogle Scholar
  53. Raghukumar S, Sharma S, Raghukumar C, Sathe-Pathak V (1994) Thraustochytrid and fungal component of marine detritus. IV. Laboratory studies on decomposition of the leaves of the mangrove Rhizophora apiculata Blume. J Exp Mar Biol Ecol 183:113–131CrossRefGoogle Scholar
  54. Raghukumar S, Sathe-Pathak V, Sharma S, Raghukumar C (1995) Thraustochytrid and fungal component of marine detritus. III. Field studies on decomposition of the mangrove Rhizophora apiculata. Aquat Microb Ecol 9:117–125CrossRefGoogle Scholar
  55. Raghukumar S, Ramaiah N, Raghukumar C (2001) Dynamics of thraustochytrid protists in the water column of the Arabian Sea. Aquat Microb Ecol 24:175–186CrossRefGoogle Scholar
  56. Santangelo G, Bongiorni L, Pignataro L (2000) Abundance of thraustochytrids and ciliated protozoans in a Mediterranean sandy shore determined by an improved, direct method. Aquat Microb Ecol 23:55–61CrossRefGoogle Scholar
  57. Sathe-Pathak V, Raghukumar S, Raghukumar C, Sharma S (1993) Thraustochytrid and fungal component of marine detritus I-Field studies of decomposition of the brown algae Sargassium cinereum. Ind J Mar Sci 22:159–169Google Scholar
  58. Sharma S, Raghukumar C, Raghukumar S, Sathe-Pathak V, Chandramohan D (1994) Thraustochytrid and fungal components of marine detritus. IV. Laboratory studies on decomposition of the brown alga Sargassium cinereum. J Exp Mar Biol Ecol 175:217–242CrossRefGoogle Scholar
  59. Sherr EB, Caron DA, Sherr BF (1993) Staining of heterotrophic protists for visualization via epifluorescence microscopy. In: Kemp PF, Sherr BF, Sherr EB, Cole JJ (eds) Aquatic microbial ecology. Lewis Publishers, Boca RatonGoogle Scholar
  60. Sigee DC (2005) Freshwater microbiology. Wiley, Chichester, EnglandGoogle Scholar
  61. Sime-Ngando T, Colombet J (2009) Virus et prophages dans les écosystèmes aquatiques. Can J Microbiol 55:95–109PubMedCrossRefGoogle Scholar
  62. Skovhus TL, Ramsing NB, Holmstro C, Kjelleberg S, Dahllo I (2004) Real-time quantitative PCR for assessment of abundance of Pseudoalteromonas species in marine samples. Appl Environ Microbiol 70:2373–2382PubMedCrossRefGoogle Scholar
  63. Starink M, Bar-Gilissen MJ, Bak RPM, Cappenberg TE (1994) Quantitative centrifugation to extract benthic protozoa from freshwater sediments. Appl Environ Microbiol 60:167–173PubMedGoogle Scholar
  64. Stoecker DK, Gustafson DE (2003) Cell-surface proteolytic activity of photosynthetic dinoflagellates. Aquat Microb Ecol 30:175–183CrossRefGoogle Scholar
  65. Sumathi JC, Raghukumar C (2009) Anaerobic denitrification in fungi from the coastal marine sediments off Goa, India. Mycol Res 113:100–109CrossRefGoogle Scholar
  66. Takai K, Horikoshi K (2000) Rapid detection and quantification of members of archaeal community by quantitative PCR using fluorogenic probes. Appl Environ Microbiol 66(11):5066–5072PubMedCrossRefGoogle Scholar
  67. Takao Y, Tomaru Y, Nagasaki K, Sasakura Y, Yokoama R, Honda D (2007) Fluorescence in situ hybridization using reformatted targeted probe for specific detection of thraustochytrids (Labyrinthulomycetes). Plank Benthos Res 2(2):91–97CrossRefGoogle Scholar
  68. Tang KW, Taal M (2005) Trophic modification of food quality by heterotrophic protists: species-specific effects on copepod egg production and egg hatching. J Exp Mar Biol Ecol 318:85–98CrossRefGoogle Scholar
  69. Tao SF, Taghon GL (1997) Enumeration of protozoa and bacteria in muddy sediment. Microb Ecol 33:144–148CrossRefGoogle Scholar
  70. Theron J, Cloete TE (2000) Molecular techniques for determining microbial diversity and community structure in natural environment. Crit Rev Microbiol 26(1):37–57PubMedCrossRefGoogle Scholar
  71. Ulken A (1981) On the role of phycomycetes in the food web of different mangrove swamps with brackish waters and waters of high salinity. Kieler Meeresforsh Sonderh 5:425–428Google Scholar
  72. Unagul P, Assantachai C, Phadungruengluij S, Suphantharika M, Verduyn C (2005) Properties of the docosahexaenoic acid-producer Schizochytrium mangrovei Sk-02: effects of glucose, temperature and salinity and their interaction. Bot Mar 48:387–394CrossRefGoogle Scholar
  73. Weinbauer MG, Rassoulzadegan F (2004) Are viruses driving microbial diversification and diversity? Environ Microbiol 6:1–11PubMedCrossRefGoogle Scholar
  74. Wong MKM, Vrijmoed LLP, Au DWT (2005) Abundance of thraustochytrids on fallen decaying leaves of Kandelia candel and mangrove sediments in Futian National Nature Reserve, China. Bot Mar 48:374–378CrossRefGoogle Scholar
  75. Zhukova NV, Kharlamenko VI (1999) Sources of essential fatty acids in the marine microbial loop. Aquat Microb Ecol 17:153–157CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.IMAR-Department of Oceanography and Fisheries (DOP)University of the AzoresHortaPortugal

Personalised recommendations