Advertisement

Heavy Metal-Resistant Streptomycetes in Soil

  • Eileen Schütze
  • Erika Kothe
Chapter
Part of the Soil Biology book series (SOILBIOL, volume 31)

Abstract

Streptomycetes are a dominant group of soil bacteria which belong to the group of Actinobacteria. They are known for their complex life cycle, including mycelial growth and spore production, as well as their production of secondary metabolites, among them a large number of antibiotics. Streptomycetes possess a wide variety of resistance mechanism like biosorption, reduction, biomineralization, extracellular binding by chelators, efflux by transport systems, and intracellular binding of metals. In comparison to pristine soils, heavy metal-contaminated soils show much higher numbers of gram-positive bacteria, with bacilli and streptomycetes dominating over gram-negative proteobateria or firmicutes. The understanding of molecular mechanisms of heavy metal resistance in laboratory cultures as well as directly in soil systems is an essential basis for applied and interdisciplinary research as well as remediation of contaminated sites.

Keywords

Acidic Mine Drainage Heavy Metal Stress Acidithiobacillus Ferrooxidans Heavy Metal Resistance Cladosporium Cladosporioides 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We would like to thank the Helmholtz Interdisciplinary Graduate School for Environmental Research (HIGRADE) for scholarship funding, André Schmidt, René Phieler, Michael Klose and Jens Schumacher for their help and support, Sandor Nietzsche for scanning electron microscopy, as well as Dirk Merten for sequential extraction and metal analyses. Petra Mitscherlich is thanked for technical assistance and DFG-GRK1257 and JSMC for support.

References

  1. Acheampong MA, Meulepas RJW, Lens PNL (2009) Removal of heavy metals and cyanide from gold mine wastewater. J Chem Technol Biotechnol 85:590–613CrossRefGoogle Scholar
  2. Albarracín VH, Avila AL, Amoroso MJ, Abate CM (2008) Copper removal ability by Streptomyces strains with dissimilar growth patterns and endowed with cupric reductase activity. FEMS Microbiol Lett 288:141–148PubMedCrossRefGoogle Scholar
  3. Amoroso MJ, Schubert D, Mitscherlich P, Schumann P, Kothe E (2000) Evidence for high affinity nickel transporter genes in heavy metal resistant Streptomyces sp. J Basic Microbiol 40:295–301PubMedCrossRefGoogle Scholar
  4. Amoroso MJ, Castro GR, Duran A, Peraud O, Oliver G, Hill RT (2001) Chromium accumulation by two Streptomyces spp. isolated from riverine sediments. J Ind Microbiol Biotechnol 26:210–215PubMedCrossRefGoogle Scholar
  5. Banks D, Younger PL, Arnesen RT, Iversen ER, Banks SB (1997) Mine-water chemistry: the good, the bad and the ugly. Environ Geol 32:157–174CrossRefGoogle Scholar
  6. Barkay T, Turner R, Saouter E, Horn J (1992) Mercury biotransformations and their potential for remediation of mercury contamination. Biodegradation 3:147–159CrossRefGoogle Scholar
  7. Bäuerlein E (2003) Biomineralization of unicellular organisms: an unusual membrane biochemistry for the production of inorganic nano- and microstructures. Angew Chem Int Ed 42:614–641CrossRefGoogle Scholar
  8. Bentley SD, Chater KF, Cerdeno-Tarraga AM, Challis GL, Thomson NR, James KD, Harris DE, Quail MA, Kieser H, Harper D, Bateman A, Brown S, Chandra G, Chen CW, Collins M, Cronin A, Fraser A, Goble A, Hidalgo J, Hornsby T, Howarth S, Huang CH, Kieser T, Larke L, Murphy L, Oliver K, O'Neil S, Rabbinowitsch E, Rajandream MA, Rutherford K, Rutter S, Seeger K, Saunders D, Sharp S, Squares R, Squares S, Taylor K, Warren T, Wietzorrek A, Woodward J, Barrell BG, Parkhill J, Hopwood DA (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417:141–147PubMedCrossRefGoogle Scholar
  9. Bibb M, Hesketh A (2009) Analyzing the regulation of antibiotic production in Streptomycetes sp. In: David Hopwood (Ed) Complex enzymes in microbial natural product biosynthesis, part A: overview articles and peptides, vol 458, pp 93–116Google Scholar
  10. Blindauer CA, Harrison MD, Robinson AK, Parkinson JA, Bowness PW, Sadler PJ, Robinson NJ (2002) Multiple bacteria encode metallothioneins and SmtA-like zinc fingers. Mol Microbiol 45:1421–1432PubMedCrossRefGoogle Scholar
  11. Chater KF, Biro S, Lee KJ, Palmer T, Schrempf H (2010) The complex extracellular biology of Streptomyces. FEMS Microbiol Rev 34:171–198PubMedCrossRefGoogle Scholar
  12. de Jonge LW, Moldrup P, Schjonning P (2009) Soil infrastructure, interfaces and translocation processes in inner space (“soil-it-is”): towards a road map for the constraints and crossroads of soil architecture and biophysical processes. Hydrol Earth Syst Sci 13:1485–1502CrossRefGoogle Scholar
  13. Dimkpa CO, Svatos A, Dabrowska P, Schmidt A, Boland W, Kothe E (2008) Involvement of siderophores in the reduction of metal-induced inhibition of auxin synthesis in Streptomyces spp. Chemosphere 74:19–25PubMedCrossRefGoogle Scholar
  14. Dimkpa CO, Merten D, Svatos A, Büchel G, Kothe E (2009a) Metal-induced oxidative stress impacting plant growth in contaminated soil is alleviated by microbial siderophores. Soil Biol Biochem 41:154–162CrossRefGoogle Scholar
  15. Dimkpa CO, Merten D, Svatos A, Büchel G, Kothe E (2009b) Siderophores mediate reduced and increased uptake of cadmium by Streptomyces tendae F4 and sunflower (Helianthus annuus), respectively. J Appl Microbiol 107:1687–1696PubMedCrossRefGoogle Scholar
  16. Eitinger T, Mandrand-Berthelot MA (2000) Nickel transport systems in microorganisms. Arch Microbiol 173:1–9PubMedCrossRefGoogle Scholar
  17. Eitinger T (2004) In vivo production of active nickel superoxide dismutase from Prochlorococcus marinus MIT9313 is dependent on its cognate peptidase. J Bacteriol 186:7821–7825PubMedCrossRefGoogle Scholar
  18. Flärdh K, Buttner MJ (2009) Streptomyces morphogenetics: dissecting differentiation in a filamentous bacterium. Nat Rev Microbiol 7:36–49PubMedCrossRefGoogle Scholar
  19. Geslin C, Llanos J, Prieur D, Jeanthon C (2001) The manganese and iron superoxide dismutases protect Escherichia coli from heavy metal toxicity. Res Microbiol 152:901–905PubMedCrossRefGoogle Scholar
  20. Haferburg G, Kothe E (2007) Microbes and metals: interactions in the environment. J Basic Microbiol 47:453–467PubMedCrossRefGoogle Scholar
  21. Haferburg G, Merten D, Büchel G, Kothe E (2007a) Biosorption of metal and salt tolerant microbial isolates from a former uranium mining area. Their impact on changes in rare earth element patterns in acid mine drainage. J Basic Microbiol 47:474–484PubMedCrossRefGoogle Scholar
  22. Haferburg G, Reinicke M, Merten D, Büchel G, Kothe E (2007b) Microbes adapted to acid mine drainage as source for strains active in retention of aluminum or uranium. J Geochem Explor 92:196–204CrossRefGoogle Scholar
  23. Haferburg G, Klöss G, Schmitz W, Kothe E (2008) “Ni-struvite” – a new biomineral formed by a nickel resistant Streptomyces acidiscabies. Chemosphere 72:517–523PubMedCrossRefGoogle Scholar
  24. Haferburg G, Groth I, Möllmann U, Kothe E, Sattler I (2009) Arousing sleeping genes: shifts in secondary metabolism of metal tolerant actinobacteria under conditions of heavy metal stress. Biometals 22:225–234PubMedCrossRefGoogle Scholar
  25. Haferburg G, Kothe E (2010) Metallomics: lessons for metalliferous soil remediation. Appl Microbiol Biotechnol 87:1271–1280PubMedCrossRefGoogle Scholar
  26. Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11PubMedCrossRefGoogle Scholar
  27. Hider RC, Kong XL (2010) Chemistry and biology of siderophores. Nat Prod Rep 27:637–657PubMedCrossRefGoogle Scholar
  28. Hopwood DA (2006) Soil to genomics: the Streptomyces chromosome. Ann Rev Genet 40:1–23PubMedCrossRefGoogle Scholar
  29. Huang P-M, Wang M-K, Chiu C-Y (2005) Soil mineral-organic matter-microbe interactions: impacts on biogeochemical processes and biodiversity in soils. Pedobiologia 49:609–635CrossRefGoogle Scholar
  30. Huang DL, Tang DJ, Liao Q, Li HC, Chen Q, He YQ, Feng JX, Jiang BL, Lu GT, Chen BS, Tang JL (2008) The Zur of Xanthomonas campestris functions as a repressor and an activator of putative zinc homeostasis genes via recognizing two distinct sequences within its target promoters. Nucleic Acids Res 36:4295–4309PubMedCrossRefGoogle Scholar
  31. Jabeen R, Ahmad A, Iqbal M (2009) Phytoremediation of heavy metals: physiological and molecular mechanisms. Bot Rev 75:339–364CrossRefGoogle Scholar
  32. Jroundi F, Merroun ML, Arias JM, Rossberg A, Selenska-Pobell S, Gonzalez-Munoz MT (2007) Spectroscopic and microscopic characterization of uranium biomineralization in Myxococcus xanthus. Geomicrobiol J 24:441–449CrossRefGoogle Scholar
  33. Kamaludeen SPB, Ramasamy K (2008) Rhizoremediation of metals: harnessing microbial communities. Indian J Microbiol 48:80–88CrossRefGoogle Scholar
  34. Khamna S, Yokota A, Lumyong S (2009) Actinomycetes isolated from medicinal plant rhizosphere soils: diversity and screening of antifungal compounds, indole-3-acetic acid and siderophore production. World J Microbiol Biotechnol 25:649–655CrossRefGoogle Scholar
  35. Kim YJ, Song JY, Hong SK, Smith CP, Chang YK (2008) Effects of pH shock on the secretion system in Streptomyces coelicolor A3(2). J Microbiol Biotechnol 18:658–662PubMedGoogle Scholar
  36. Kindler R, Miltner A, RichnowH-H KM (2006) Fate of gram-negative bacterial biomass in soil-mineralization and contribution to SOM. Soil Biol Biochem 38:2860–2870CrossRefGoogle Scholar
  37. Kindler R, Miltner A, Thullner M, Richnow H-H, Kästner M (2009) Fate of bacterial biomass derived fatty acids in soil and their contribution to soil organic matter. Org Geochem 40:29–37CrossRefGoogle Scholar
  38. Kothe E, Bergmann H, Büchel G (2005) Molecular mechanisms in bio-geo-interactions: from a case study to general mechanisms. Chem Erde-Geochem 65:7–27CrossRefGoogle Scholar
  39. Kothe E, Dimkpa C, Haferburg G, Schmidt A, Schmidt A, Schütze E (2010) Streptomycete heavy metal resistance: extracellular and intracellular mechanisms. In: Sherameti I, Varma A (eds) Soil biology. Springer, HeidelbergGoogle Scholar
  40. Kuffner M, Puschenreiter M, Wieshammer G, Gorfer M, Sessitsch A (2008) Rhizosphere bacteria affect growth and metal uptake of heavy metal accumulating willows. Plant Soil 304:35–44CrossRefGoogle Scholar
  41. Laliberté J, Whitson LJ, Beaudoin J, Holloway SP, Hart PJ, Labbe S (2004) The Schizosaccharomyces pombe Pcs protein functions in both copper trafficking and metal detoxification pathways. J Biol Chem 279:28744–28755PubMedCrossRefGoogle Scholar
  42. Lamparter A, Bachmann J, Goebel MO, Woche SK (2009) Carbon mineralization in soil: impact of wetting-drying, aggregation and water repellency. Geoderma 150:324–333CrossRefGoogle Scholar
  43. Liang HC, Thomson BM (2009) Minerals and mine drainage. Water Environ Res 81:1615–1663CrossRefGoogle Scholar
  44. Mejáre M, Bülow L (2001) Metal-binding proteins and peptides in bioremediation and phytoremediation of heavy metals. Trends Biotechnol 19:67–73PubMedCrossRefGoogle Scholar
  45. Merroun ML, Selenska-Pobell S (2008) Bacterial interactions with uranium: an environmental perspective. J Contam Hydrol 102:285–295PubMedCrossRefGoogle Scholar
  46. Miltner A, Kindler R, Knicker H, Richnow H-H, Kästner M (2009) Fate of microbial biomass-derived amino acids in soil and their contribution to soil organic matter. Org Geochem 40:978–985CrossRefGoogle Scholar
  47. Morales DK, Ocampo W, Zambiano MM (2007) Efficient removal of hexavalent chromium by a tolerant Streptomyces sp affected by the toxic effect of metal exposure. J Appl Microbiol 103:2704–2712PubMedCrossRefGoogle Scholar
  48. Nedelkova M, Merroun ML, Rossberg A, Hennig C, Selenska-Pobell S (2007) Microbacterium isolates from the vicinity of a radioactive waste depository and their interactions with uranium. FEMS Microbiol Ecol 59:694–705PubMedCrossRefGoogle Scholar
  49. Nogueira MA, Nehls U, Hampp R, Poralla K, Cardoso E (2007) Mycorrhiza and soil bacteria influence extractable iron and manganese in soil and uptake by soybean. Plant Soil 298:273–284CrossRefGoogle Scholar
  50. Onaka H, Nakagawa T, Horinouchi S (1998) Involvement of two A-factor receptor homologues in Streptomyces coelicolor A3(2) in the regulation of secondary metabolism and morphogenesis. Mol Microbiol 28:743–53PubMedCrossRefGoogle Scholar
  51. Paciolla MD, Davies G, Jansen SA (1999) Generation of hydroxyl radicals from metal-loaded humic acids. Environ Sci Technol 33:1814–1818CrossRefGoogle Scholar
  52. Pal R, Rai JPN (2010) Phytochelatins: peptides involved in heavy metal detoxification. Appl Biochem Biotechnol 160:945–963PubMedCrossRefGoogle Scholar
  53. Polti MA, Amoroso MJ, Abate CM (2010) Intracellular chromium accumulation by Streptomyces sp. MC1. Water Air Soil Pollut 214:49–57CrossRefGoogle Scholar
  54. Rajkumar M, Ae N, Prasad MNV, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28:142–149PubMedCrossRefGoogle Scholar
  55. Ramírez-Díaz MI, Diaz-Perez C, Vargas E, Riveros-Rosas H, Campos-Garcia J, Cervantes C (2008) Mechanisms of bacterial resistance to chromium compounds. Biometals 21:321–332PubMedCrossRefGoogle Scholar
  56. Rawlings DE (2002) Heavy metal mining using microbes. Ann Rev Microbiol 56:65–91CrossRefGoogle Scholar
  57. Riccardi G, Milano A, Pasca MR, Nies DH (2008) Genomic analysis of zinc homeostasis in Mycobacterium tuberculosis. FEMS Microbiol Lett 287:1–7PubMedCrossRefGoogle Scholar
  58. Saidijam M, Benedetti G, Ren QH, Xu ZQ, Hoyle CJ, Palmer SL, Ward A, Bettaney KE, Szakonyi G, Meuller J, Morrison S, Pos MK, Butaye P, Walraven K, Langton K, Herbert RB, Skurray RA, Paulsen IT, O’Reilly J, Rutherford NG, Brown MH, Bill RM, Henderson PJF (2006) Microbial drug efflux proteins of the major facilitator superfamily. Curr Drug Targets 7:793–811PubMedCrossRefGoogle Scholar
  59. Salomé C, Nunan N, Pouteau V, Lerch TZ, Chenu C (2010) Carbon dynamics in topsoil and in subsoil may be controlled by different regulatory mechanisms. Global Change Biol 16:416–426CrossRefGoogle Scholar
  60. Sar P, Kazy SK, Singh SP (2001) Intracellular nickel accumulation by Pseudomonas aeruginosa and its chemical nature. Lett Appl Microbiol 32:257–261PubMedCrossRefGoogle Scholar
  61. Scherr N, Nguyen L (2009) Mycobacterium versus Streptomyces – we are different, we are the same. Curr Opinion Microbiol 12:699–707CrossRefGoogle Scholar
  62. Schmidt A, Haferburg G, Sineriz M, Merten D, Büchel G, Kothe E (2005) Heavy metal resistance mechanisms in actinobacteria for survival in AMD contaminated soils. Chem Erde-Geochem 65:131–144CrossRefGoogle Scholar
  63. Schmidt A, Schmidt A, Haferburg G, Kothe E (2007) Superoxide dismutases of heavy metal resistant streptomycetes. J Basic Microbiol 47:56–62PubMedCrossRefGoogle Scholar
  64. Schmidt A, Gube M, Schmidt A, Kothe E (2009a) In silico analysis of nickel containing superoxide dismutase evolution and regulation. J Basic Microbiol 49:109–118PubMedCrossRefGoogle Scholar
  65. Schmidt A, Haferburg G, Schmidt A, Lischke U, Merten D, Ghergel F, Büchel G, Kothe E (2009b) Heavy metal resistance to the extreme: Streptomyces strains from a former uranium mining area. Chem Erde-Geochem 69:35–44CrossRefGoogle Scholar
  66. Schmidt A, Hagen M, Schütze E, Schmidt A, Kothe E (2010) In silico prediction of potential metallothioneins and metallohistins in actinobacteria. J Basic Microbiol 50:562–569PubMedCrossRefGoogle Scholar
  67. Schützendübel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365PubMedCrossRefGoogle Scholar
  68. Shanker AK, Cervantes C, Loza-Tavera H, Avudainayagam S (2005) Chromium toxicity in plants. Environ Int 31:739–753PubMedCrossRefGoogle Scholar
  69. Shao ZZ, Sun FQ (2007) Intracellular sequestration of manganese and phosphorus in a metal-resistant fungus Cladosporium cladosporioides from deep-sea sediment. Extremophiles 11:435–443PubMedCrossRefGoogle Scholar
  70. Shao HB, Chu LY, Ruan CJ, Li H, Guo GD, Li WX (2010) Understanding molecular mechanisms for improving phytoremediation of heavy metal-contaminated soils. Crit Rev Biotechnol 30:23–30CrossRefGoogle Scholar
  71. Shi JG, Lindsay WP, Huckle JW, Morby AP, Robinson NJ (1992) Cyanobacterial metallothionein gene expressed in Escherichia-coli – metal-binding properties of the expressed protein. FEBS Lett 303:159–163PubMedCrossRefGoogle Scholar
  72. Sigel A, Sigel H, Sigel RKO (2008) Metal ions in life sciences. In: Biomineralization: from nature to application. Wiley, ChichesterGoogle Scholar
  73. So NW, Rho JY, Lee SY, Hancock IC, Kim JH (2001) A lead-absorbing protein with superoxide dismutase activity from Streptomyces subrutilus. FEMS Microbiol Lett 194:93–98PubMedCrossRefGoogle Scholar
  74. Tarhan C, Pekmez M, Karaer S, Arda N, Sarikaya AT (2007) The effect of superoxide dismutase deficiency on zinc toxicity in Schizosaccharomyces pombe. J Basic Microbiol 47:506–512PubMedCrossRefGoogle Scholar
  75. van de Weghe JG, Ow DW (2001) Accumulation of metal-binding peptides in fission yeast requires hmt2 (+). Mol Microbiol 42:29–36CrossRefGoogle Scholar
  76. Xu J, Tian YS, Peng RH, Xiong AS, Zhu B, Hou XL, Yao QH (2010) Cyanobacteria MT gene SmtA enhance zinc tolerance in Arabidopsis. Mol Biol Reports 37:1105–1110CrossRefGoogle Scholar
  77. Yang X, Feng Y, He ZL, Stoffella PJ (2005) Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation. J Trace Elements Med Biol 18:339–353CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Institute of Microbiology, Microbial PhytopathologyFriedrich Schiller University JenaJenaGermany

Personalised recommendations