Natural Biomineralization in the Contaminated Sediment-Water System at the Ingurtosu Abandoned Mine

  • D. Medas
  • R. Cidu
  • P. Lattanzi
  • F. Podda
  • G. De Giudici
Part of the Soil Biology book series (SOILBIOL, volume 31)


The Ingurtosu Pb–Zn mine (S-W Sardinia) was exploited for about a century until 1968. Huge amounts of tailings were abandoned, resulting in long-term heavy metal dispersion processes in both soils and waters. Zn and Pb concentration in tailings and soils attains values up to thousands of mg per kilogram. The maximum Zn concentration in water attains several hundreds of mg per liter, whereas Cd and Pb concentrations are in the order of thousands of μg per liter. Heavy metal concentration in waters of Rio Naracauli, the main stream of the area, is abated by seasonal biomineralization processes. Precipitation of hydrozincite [Zn5(CO3)2(OH)6] and of a Zn-rich amorphous phase results in a decrease of Zn concentration down to a few mg per liter. Other metals such as Pb, Cd, Cu, and Ni are coprecipitated with the Zn phases. This chapter reports the state of our knowledge on the Naracauli biomineralization process.


Inductively Couple Plasma Mass Spectrometry Saturation Index Lawrence Livermore National Laboratory XRPD Pattern Biomineralization Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was funded by the EU UMBRELLA project (grant number 226870). Rainfall data were kindly provided by hydrological service of Regione Autonoma della Sardegna. Katarzyna Turnau (Krakow University) is acknowledged for microscope work and scientific discussion.


  1. Assorgia A, Brotzu P, Morbidelli L, Nicoletti M, Traversa G (1984) Successione e cronologia (K-Ar) degli eventi vulcanici del complesso calco-alcalino oligo-miocenico dell’Arcuentu (Sardegna centro-occidentale). Period Mineral 53:89–102Google Scholar
  2. Biddau R, Da Pelo S, Dadea C (2001) The abandoned mining area of Montevecchio-Ingurtosu. Rend Sem Fac Sc Univ Cagliari 71(2):109–123Google Scholar
  3. Caboi R, Cidu R, Cristini A, Fanfani L, Massoli-Novelli R, Zuddas P (1993) The abandoned Pb-Zn mine of Ingurtosu, Sardinia (Italy). Eng Geol 34:211–218CrossRefGoogle Scholar
  4. Carmignani L, Barca S, Oggiano G, Pertusati I, Conti P, Eltrudis A, Funedda A, Pasci S (1996) Carta Geologica della Sardegna 1:200.000. Serv Geol d’ItaliaGoogle Scholar
  5. Cavinato A, Zuffardi P (1948) Geologia della miniera di Montevecchio. In: Notizie sull’industria del Piombo e dello Zinco in Italia. vol 1, pp 427–464. Montevecchio Società Italiana del Piombo e dello ZincoGoogle Scholar
  6. Chessa A (1994) Studio geochimico-ambientale degli sterili nel bacino idrografico del Rio Piscinas (Sardegna SW). Degree thesis, University of CagliariGoogle Scholar
  7. Cidu R, Biddau R (2007) Transport of trace elements at different seasonal conditions: effects on the quality of river water in a Mediterranean area. Appl Geochem 22:2777–2794CrossRefGoogle Scholar
  8. Cidu R, Frau R (2009) Distribution of trace elements in filtered and non filtered aqueous fractions: insights from rivers and streams of Sardinia (Italy). Appl Geochem 24:611–623CrossRefGoogle Scholar
  9. Concas E, Caroli S (1994) Le Miniere di Gennamari e Ingurtosu. Pezzini, ViareggioGoogle Scholar
  10. De Giudici G, Podda F, Sanna R, Musu E, Tombolini R, Cannas C, Musinu A, Casu M (2009) Structural properties of biologically controlled hydrozincite: an HRTEM and NMR spectroscopic study. Am Mineral 94:1698–1706CrossRefGoogle Scholar
  11. De Giudici G, Podda F, Caredda A, Tombolini R, Casu M, Ricci C (2007) In vitro investigation of hydrozincite biomineralization. In: Bullen TD, Wang Y (eds) Water rock interaction 12, vol 2. Taylor & Francis, London, pp 415–419Google Scholar
  12. Fanfani L, Zuddas P, Chessa A (1997) Heavy metals speciation analysis as a tool for studying mine tailings weathering. J Geochem Explor 58:241–248CrossRefGoogle Scholar
  13. Lattanzi P, Meneghini C, De Giudici G, Podda F (2007) Report of experiment 08-02-636. ESRF, GrenobleGoogle Scholar
  14. Lattanzi P, Meneghini C, De Giudici G, Podda F (2010a) Uptake of Pb by hydrozincite, Zn5(CO3)2(OH)6 – implications for remediation. J Hazard Mater 177:1138–1144PubMedCrossRefGoogle Scholar
  15. Lattanzi P, Maurizio C, Meneghini C, De Giudici G, Podda F (2010b) Uptake of Cd in hydrozincite, Zn5(CO3)2(OH)6: evidence from X-ray absorption spectroscopy and anomalous X-ray diffraction. Eur J Mineral 22:557–564CrossRefGoogle Scholar
  16. Lattanzi P, Meneghini C, De Giudici G, Medas D, Podda F (2010c) Report of experiment CH-2838. ESRF, GrenobleGoogle Scholar
  17. Loi M (1992) Studio degli sterili della miniera di Ingurtosu e loro interazione con le acque del Rio Naracauli. Degree thesis, University of CagliariGoogle Scholar
  18. Marcello A, Pretti S, Valera P, Agus M, Boni M, Fiori M (2004) Metallogeny in Sardinia (Italy): from the Cambrian to the Tertiary, 32nd international geological congress, APAT 4:14–36, FirenzeGoogle Scholar
  19. Mercy MA, Rock PA, Casey WH, Mokarram MM (1998) Gibbs energies of formation for hydrocerussite [Pb(OH)2. (PbCO3)2(S)] and hydrozincite [Zn(OH)2]3. (ZnCO3)2(S)] at 298 K and 1 bar from electrochemical cell measurements. Am Mineral 83:739–745Google Scholar
  20. Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (version 2) – a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. US Geol Surv Water-Resour Invest Rep, 99–4259Google Scholar
  21. Podda F, Zuddas P, Minacci A, Pepi M, Baldi F (2000) Heavy metal coprecipitation with hydrozincite [Zn5 (CO3)2(OH)6] from mine waters caused by photosynthetic microorganisms. Appl Environ Microbiol 66:5092–5098PubMedCrossRefGoogle Scholar
  22. Regione Autonoma della Sardegna (RAS) (2003) Piano Regionale di gestione dei rifiuti – Piano di bonifica siti inquinatiGoogle Scholar
  23. Regione Autonoma della Sardegna (RAS) (2008) Piano di bonifica delle aree minerarie dismesse del Sulcis-Iglesiente-GuspineseGoogle Scholar
  24. Salvadori I, Zuffardi P (1973) Guida per l’escursione a Montevecchio e all’Arcuentu. Itinerari Geologici, Mineralogici e Giacimentologici in Sardegna 1:29–46Google Scholar
  25. Secchi FAG, Brotzu P, Callegari E (1991) The Arburese igneous complex (SW Sardinia). An example of dominant igneous fractionation leading to peraluminous cordierite-bearing leucogranites as residual melts. Chem Geol 92:213–249CrossRefGoogle Scholar
  26. Sprocati AR, Alisi C, Segre L, Tasso F, Galletti M, Cremisini C (2006) Investigating heavy metal resistance, bioaccumulation and metabolic profile of a metallophile microbial consortium native to an abandoned mine. Sci Total Environ 366:649–658PubMedCrossRefGoogle Scholar
  27. Stara P, Rizzo R, Tanca GA (1996) Iglesiente e Arburese. Miniere e Minerali, vol 2. EMSA, CagliariGoogle Scholar
  28. Tessier A, Campbell PG, Bisson M (1979) Sequential extraction procedure for speciation of particulate trace metals. Anal Chem 51:844–850CrossRefGoogle Scholar
  29. Zuddas P, Podda F, Lay A (1998) Flocculation of metal rich-colloids in a stream affected by mine drainage. In: Arehart GB, Hulston JR (eds) Water rock interaction 9. A.A. Balkema, Rotterdam, pp 1009–1013Google Scholar
  30. Zuddas P, Podda F (2005) Variations in physico-chemical properties of water associated with bio-precipitation of hydrozincite [Zn5(CO3)2(OH)6] in the waters of Rio Naracauli, Sardinia (Italy). Appl Geochem 20:507–517CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • D. Medas
    • 1
  • R. Cidu
    • 1
  • P. Lattanzi
    • 1
  • F. Podda
    • 1
  • G. De Giudici
    • 1
  1. 1.Department of Earth SciencesUniversity of CagliariCagliariItaly

Personalised recommendations