Skip to main content

Geomicrobial Manganese Redox Reactions in Metal-Contaminated Soil Substrates

  • Chapter
  • First Online:

Part of the book series: Soil Biology ((SOILBIOL,volume 31))

Abstract

Geomicrobial cycles influence metal mobilities in soil. The formation of Fe and Mn(hydr)oxides in biogeochemical horizons and the subsequent mobilization of Mn from the substrate can lead to high mobility of Mn. This process of Mn mobilization was studied in substrates derived from a former uranium mining area in column experiments. Microbially influenced manganese release was investigated in columns with an autochthonous microbial community and columns additionally inoculated with Streptomyces. Additionally, azide-poisoned columns were analyzed. Levels of 1,060 μg l−1 Mn(II) were released from inoculated columns while batch experiments led to elution of up to 28 μg l−1 Mn(II). The microbial influence on element cycling correlated with decreasing redox potentials. To study the potential of microbial reduction processes, strains isolated from these columns were investigated. One prominent bacterium, identified as Cupriavidus metallidurans, tolerated up to 30 mM Mn(II). However, no aerobic microbial Mn reduction was found indicating that Mn release was either dependent on anaerobic conditions, or microbial respiration initiated abiotic Mn reduction by decreasing the redox potential necessary for these processes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Altenburger P, Kämpfer P, Makristathis A, Lubitz W, Busse H-J (1996) Classification of bacteria islolated from a medieval wall painting. J Biotechnol 47:39–52

    Article  CAS  Google Scholar 

  • Atlas RM, Bartha R (1992) Microbial ecology: fundamentals and applications. The Benjamin Cummings, Redwood City, CA

    Google Scholar 

  • Amoroso MJ, Schubert D, Mitscherlich P, Schumann P, Kothe E (2000) Evidence for high affinity nickel transporter genes in heavy metal resistant Streptomyces sp. J Basic Microbiol 40:295–301

    Article  PubMed  CAS  Google Scholar 

  • Bratina BJ, Stevenson BS, Green WJ, Schmidt TM (1998) Manganese reduction by microbes from oxic regions of the Lake Vanda (Antarctica) Water Column. Appl Environ Microbiol 64:3791–3797

    PubMed  CAS  Google Scholar 

  • Burdige DJ, Nealson KH (1985) Microbial manganese reduction by enrichment cultures from coastal marine sediments. Appl Environ Microbiol 50:491–497

    PubMed  CAS  Google Scholar 

  • DIN ISO 11260:1997–05: Determination of effective cation exchange capacity and base saturation level using barium chloride solution. In: Deutsches Institut für Normung (DIN) (ed) Handbuch der Bodenuntersuchung, Beuth Verlag, Berlin

    Google Scholar 

  • DIN 19684-1:1977–02 Methods of soil investigations for agricultural engineering; chemical laboratory tests; determination of pH-value of the soil and lime requirement. In: Deutsches Institut für Normung (DIN) (ed) Handbuch der Bodenuntersuchung, Beuth Verlag, Berlin

    Google Scholar 

  • Di-Ruggiero J, Gounot A-M (1990) Microbial manganese reduction mediated by bacterial strains isolated from aquifer sediments. Microb Ecol 20:53–63

    Article  CAS  Google Scholar 

  • Gounot A-M (1994) Microbial oxidation and reduction of manganese: consequences in groundwater and applications. FEMS Microbiol Rev 14:339–349

    Article  PubMed  CAS  Google Scholar 

  • Grawunder A, Lonschinski M, Merten D, Büchel G (2009) Distribution and bonding of the residual contamination in the glacial sediments at the former uranium mining leaching heap of Gessen/Thuringia. Chem Erde 69:5–19

    Article  CAS  Google Scholar 

  • Haferburg G, Reinicke M, Merten D, Büchel G, Kothe E (2007) Microbes adapted to acid mine drainage as source for strains active in retention of aluminum or uranium. J Geochem Explor 92:196–204

    Article  CAS  Google Scholar 

  • Jakubick AT, Gatzweiler R, Mager D, Robertson AM (1997) The Wismut waste rock pile remediation program of the Ronneburg mining district, Germany. In: Fourth international conference acid rock drainage, Vancouver, BC, Canada, May 31–June 6, 1997, vol III. pp 1285–1301

    Google Scholar 

  • Kashem MA, Singh BR (2001) Metal availability in contaminated soils: I. Effects of flooding and organic matter on changes in Eh, pH and solubility of Cd, Ni and Zn. Nutr Cycl Agroecosyst 61:247–255

    Article  CAS  Google Scholar 

  • Khattack RA, Page AL (1992) Mechanism of manganese adsorption on soil constituents. In: Adriano DC (ed) Biogeochemistry of trace metals. Lewis, Boca Raton, FL, pp 383–400

    Google Scholar 

  • Kothe E, Bergmann H, Büchel G (2005) Molecular mechanisms in bio-geo-interactions: from a case study to general mechanisms. Chem Erde 65:7–27

    Article  CAS  Google Scholar 

  • Lovley DR (1991) Dissimilatory Fe (III) and Mn (IV) reduction. Microbiol Rev 55:259–287

    PubMed  CAS  Google Scholar 

  • Marre D (2003) Untersuchungen zum Vorkommen und Transportverhalten von Partikeln in Grundwässern und Abschätzung ihrer Relevanz für den Schadstofftransport. Ph.D. thesis, Technical University Dresden

    Google Scholar 

  • McKenzie RM (1989) Manganese oxides and hydroxides. In: Dixon J, Weed S (eds) Minerals in soil environments. Soil Science Society of America, Madison, WI, pp 439–465

    Google Scholar 

  • Mergeay M, Nies D, Schlegel HG, Gerits J, Charles P, Van Gijsegem F (1985) Alcaligenes eutrophus CH34 is a facultative chemolithotroph with plasmid-bound resistance to heavy metals. J Bacteriol 162:328–334

    PubMed  CAS  Google Scholar 

  • Mergeay M, Monchy S, Vallaeys T, Auquier V, Benotmane A, Bertin P, Taghavi S, Dunn J, van der Lelie D, Wattiez R (2003) Ralstonia metallidurans, a bacterium specially adapted to toxic metals: towards a tentative catalogue of metal-responsive genes. FEMS Microbiol Rev 27:385–410

    Article  PubMed  CAS  Google Scholar 

  • Merten D, Büchel G, Kothe E (2004) Studies on microbial heavy metal retention from uranium mining drainage water with special emphasis on rare earth elements. Mine Water Environ 23:34–43

    Article  CAS  Google Scholar 

  • Merten D, Geletneky J, Bergmann H, Haferburg G, Kothe E, Büchel G (2005) Rare earth element patterns: a tool for understanding processes in remediation of acid mine drainage. Chem Erde 65:97–114

    Article  CAS  Google Scholar 

  • Nealson KH, Myers CR (1992) Microbial reduction of manganese and iron: new approaches to carbon cycling. Appl Environ Microbiol 58:439–443

    PubMed  CAS  Google Scholar 

  • Nealson KH, Saffarini D (1994) Iron and manganese in anaerobic respiration. Annu Rev Microbiol 48:311–343

    Article  PubMed  CAS  Google Scholar 

  • Nies DH (1992) Resistance to cadmium, cobalt, zinc, nickel in microbes. Plasmid 27:17–28

    Article  PubMed  CAS  Google Scholar 

  • Ridge EH, Rovira AD (1971) Phosphatase activity of intact young wheat roots under sterile and nonsterile conditions. New Phytol 70:1017–1026

    Article  CAS  Google Scholar 

  • Rüger F, Dietel W (1998) Vier Jahrzehnte Uranerzbau um Ronneburg. Lapis 98:65–74

    Google Scholar 

  • Schindler F (2007) Untersuchungen zur mikrobiellen Aktivität und Diversität im Bereich des schwermetallbelasteten Testfelds “Gessenwiese”. M.Sc. thesis, Friedrich Schiller University Jena

    Google Scholar 

  • Schmidt A, Haferburg G, Sineriz M, Merten D, Büchel G, Kothe E (2005) Heavy metal resistance mechanisms in actinobacteria for survival in AMD contaminated soils. Chem Erde 65:131–144

    Article  CAS  Google Scholar 

  • Sposito G (1989) The Chemistry of Soils. Oxford University Press, New York

    Google Scholar 

  • Tack FMG, van Ranst E, Lievens C, Vandenberghe RE (2006) Soil solution Cd, Cu and Zn concentrations as affected by short-time drying or wetting: The role of hydrous oxides of Fe and Mn. Geoderma 137:83–89

    Article  CAS  Google Scholar 

  • Thiemann JE, Pagani H, Beretta G (1968) A new genus of the Actinomycetales: Microtetraspora gen. nov. J Gen Microbiol 50:295–303

    PubMed  CAS  Google Scholar 

  • Trimble RB, Ehrlich HL (1970) Bacteriology of manganese nodules: IV. Induction of an MnO2-reductase system in a marine Bacillus. Appl Environ Microbiol 19:966–972

    CAS  Google Scholar 

  • Van Keulen G, Jonkers HM, Claessen D, Dijkhuizen L, Wosten HAB (2003) Differentiation and anaerobiosis in standing liquid cultures of Streptomyces coelicolor. J Bacteriol 185:1455–1458

    Article  PubMed  Google Scholar 

  • Van Keulen G, Alderson J, White J, Sawers RG (2007) The obligate aerobic actinomycete Streptomyces coelicolor A3(2) survives extended periods of anaerobic stress. Environ Microbiol 9:3143–3149

    Article  PubMed  Google Scholar 

  • Vandenabeele J, de Beer D, Germonpre R, Van de Sande R, Verstraete W (1995) Influence of nitrate on manganese removing microbial consortia from sand filters. Water Res 29:579–587

    Article  CAS  Google Scholar 

  • Wieder RK, Lang GE (1986) Fe, Al, Mn, and S chemistry of Sphagnum peat in four peatlands with different metal and sulfur input. Water Air Soil Pollut 29:309–320

    Article  CAS  Google Scholar 

  • Wieder RK, Linton MN (1990) Laboratory mesocosm studies of Fe, Al, Mn, Ca, and Mg dynamics in wetlands exposed to synthetic acid coal mine drainage. Water Air Soil Pollut 51:181–196

    Article  CAS  Google Scholar 

  • Xiang HF, Banin A (1996) Solid-phase manganese fractionation changes in saturated arid-zone soils: pathways and kinetics. Soil Sci Soc Am J 60:1072–1080

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Ulrike Buhler, Ines Kamp, Gundula Rudolph and Gerit Weinzierl for technical assistance. This work was supported by the German Federal Ministry of Education & Research grant no. 02S8294 KOBIOGEO and JSMC through the DFG Research Training Group 1257.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Lorenz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lorenz, C., Merten, D., Haferburg, G., Kothe, E., Büchel, G. (2012). Geomicrobial Manganese Redox Reactions in Metal-Contaminated Soil Substrates. In: Kothe, E., Varma, A. (eds) Bio-Geo Interactions in Metal-Contaminated Soils. Soil Biology, vol 31. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23327-2_5

Download citation

Publish with us

Policies and ethics