Skip to main content

Bioremediation of Copper, Chromium and Cadmium by Actinomycetes from Contaminated Soils

  • Chapter
  • First Online:
Bio-Geo Interactions in Metal-Contaminated Soils

Part of the book series: Soil Biology ((SOILBIOL,volume 31))

Abstract

Bioremediation is useful for large-scale application on environments. There is few information on actinomycetes for bioremediation of heavy metals in soils. The aim of this chapter is to show results related to chromium, copper and cadmium remediation by actinomycetes isolated from contaminated Argentinean areas. Qualitative assays showed that 100% of the isolated microorganisms were resistant up to CuSO4 80 mg L−1. Amycolatopsis tucumanensis DSM 45259 was used to bioaugment soil microcosms experimentally pollutes with Cu and for studying its ability to diminish phytoavailable Cu from soils. Cu bioimmobilization ability of A. tucumanensis was assessed measuring bioavailable Cu in the soil founding 31% lower amounts of the metal in soil. F4 strain was found cadmium resistant. In Cd(II) 8 mg L−1, the maximum specific biosorption was 37.3 mg Cd/g dry weight after 7 days of growth. The highest Cd(II) concentration was found into the cell wall (41.2%). Chromate-removing activity was estimated. Twenty percentage of the isolates from El Cadillal (EC) and 14% from a copper filter plant (CFP) were able to grow at 13 mM Cr(VI). Isolates from sugar cane could grow up to 17 mM Cr(VI). The highest and lowest Cr(VI) specific removal values were 75.5 mg g−1 cell by M3 (CFP), and 1.5 mg g−1 cell by C35 (EC) strains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albarracín VH, Amoroso MJ, Abate CM (2005) Isolation and characterization of indigenous copper resistant actinomycete strains. Chem Erde Geochem 65:145–156

    Article  Google Scholar 

  • Albarracín VH, Avila AL, Amoroso MJ, Abate CM (2008a) Copper removal ability by Streptomyces strains with dissimilar growth patterns and endowed with cupric reductase activity. FEMS Microbiol Lett 288:141–148

    Article  PubMed  Google Scholar 

  • Albarracín VH, Winik B, Kothe E, Amoroso MJ, Abate CM (2008b) Copper bioaccumulation by the actinobacterium Amycolatopsis sp. AB0. Basic Microbiol 48:323–330

    Article  Google Scholar 

  • Albarracín VH, Amoroso MJ, Abate CM (2010) Bioaugmentation of copper polluted soil microcosms with Amycolatopsis tucumanensis to diminish phytoavailable copper for Zea mays plants. Chemosphere 79:131–137

    Article  PubMed  Google Scholar 

  • Amoroso MJ, Castro GR, Carlino FJ, Romero NC (1998) Screening of heavy metal-tolerant actinomycetes isolated from the Salí River. J Gen Appl Microbiol 44:129–132

    Article  PubMed  CAS  Google Scholar 

  • Amoroso MJ, Castro GR, Durán A, Peraud O, Oliver G, Hill RT (2001) Chromium accumulation by two Streptomyces sp isolated from riverine sediments. J Ind Microbiol Biotechnol 26:210–215

    Article  PubMed  CAS  Google Scholar 

  • Antoniadis V, Alloway BJ (2001) Availability of Cd, Ni and Zn to ryegrass in sewage sludge-treated soils at different temperatures. Water Air Soil Pollut 132:201–214

    Article  CAS  Google Scholar 

  • Bailey SE, Olin TJ, Bricka RM, Adrian DD (1999) A review of potentially low-cost sorbents for heavy metals. Water Res 33:2469–2479

    Article  CAS  Google Scholar 

  • Benimeli CS, Fuentes MS, Abate CM, Amoroso MJ (2008) Bioremediation of lindane-contaminated soil by Streptomyces sp. M7 and its effects on Zea mays growth. Int Biodeter Biodegr 61:233–239

    Article  CAS  Google Scholar 

  • Boopathy R (2000) Factors limiting bioremediation technologies. Bioresour Technol 74:63–67

    Article  CAS  Google Scholar 

  • Cefalu WT, Hu FB (2004) Role of chromium in human health and in diabetes. Diabetes Care 27:2741–2751

    Article  PubMed  CAS  Google Scholar 

  • Cheung KH, Gu JD (2007) Mechanism of hexavalent chromium detoxification by microorganisms and bioremediation application potential: a review. Int Biodeter Biodegr 59:8–15

    Article  CAS  Google Scholar 

  • Cifuentes FR, Lindemann WC, Barton LL (1996) Chromium sorption and reduction in soil with implications to bioremediation. Soil Sci 161:233–241

    Article  CAS  Google Scholar 

  • Csillag J, Pártay G, Lukács A, Bujtás K, Németh T (1999) Extraction of soil solution for environmental analysis. Int J Environ Anal Chem 74:305–324

    Article  CAS  Google Scholar 

  • Das S, Chandra AL (1990) Chromate reduction in Streptomyces. Experientia 46:731–733

    Article  PubMed  CAS  Google Scholar 

  • Desjardin V, Bayard R, Lejeune P, Gourdon R (2003) Utilisation of supernatants of pure cultures of Streptomyces thermocarboxydus NH50 to reduce chromium toxicity and mobility in contaminated soils. Water Air Soil Pollut 3:153–160

    CAS  Google Scholar 

  • Francisco R, Alpoim MC, Morais PV (2002) Diversity of chromium-resistant and -reducing bacteria in a chromium-contaminated activated sludge. J Appl Microbiol 5:837–43

    Article  Google Scholar 

  • Georgopoulus PG, Roy A, Opiekun RE, Yonone-Lioy MJ, Lioy PJ (2002) Environmental dynamics and human exposure to copper. In: Georgopoulus PG, Roy A, Opiekun RE, Yonone-Lioy MJ, Lioy PJ (eds) Environmental dynamics and human exposure issues, vol 1. International Copper Association, New York, USA, pp 10–23

    Google Scholar 

  • Groudev SN, Spasova II, Georgiev PS (2001) In situ bioremediation of soils contaminated with radioactive elements and toxic heavy metals. Int J Miner Process 62:301–308

    Article  CAS  Google Scholar 

  • Hedgecott S (1994) Prioritization and standards for hazardous chemicals. In: Calow P (ed) Handbook of ecotoxicology. Blackwell, Oxford, UK, pp 378–382

    Google Scholar 

  • Horton RN, Apel WA, Thompson VS, Sheridan PP (2006) Low temperature reduction of hexavalent chromium by a microbial enrichment consortium and a novel strain of Arthrobacter aurescens. BMC Microbiol 6:5–12

    Article  PubMed  Google Scholar 

  • Jézéquel K, Lebeau T (2008) Soil bioaugmentation by free and immobilized bacteria to reduce potentially phytoavailable cadmium. Bioresour Technol 4:690–698

    Article  Google Scholar 

  • Korte F (1983) Ecotoxicology of cadmium: general overview. Ecotoxicol Environ Saf 7:3–8, Cadmium-environmental aspects. Environmental Health Criteria 135:1992

    Article  PubMed  CAS  Google Scholar 

  • Laxman SR, More S (2002) Reduction of hexavalent chromium by Streptomyces griseus. Miner Eng 15:831–837

    Article  CAS  Google Scholar 

  • Lloyd JR, Lovley DR (2001) Microbial detoxification of metals and radionuclides. Curr Opin Biotechnol 12:248–253

    Article  PubMed  CAS  Google Scholar 

  • McLean J, Terry J, Beveridge TJ (2001) Chromate Reduction by a Pseudomonad Isolated from a Site Contaminated with Chromated Copper Arsenate. Appl Environ Microbiol 3:1076–1084

    Article  Google Scholar 

  • Mench M, Tancogne J, Gomez A, Juste C (1989) Cadmium bioavailability to Nicotiana tabacum L., Nicotiana rustica L., and Zea mays L. grown in soil amended with cadmium nitrate. Biol Fertil Soils 8:48–53

    Article  CAS  Google Scholar 

  • Pattanapipitpaisal P, Brown NL, Macaskie LE (2001) Chromate reduction by Microbacterium liquefaciens immobilised in polyvinyl alcohol. Biotechnol Lett 23:61–65

    Article  CAS  Google Scholar 

  • Polti MA, Amoroso MJ, Abate CM (2007) Chromium(VI) resistance and removal by actinomycete strains isolated from sediments. Chemosphere 67:660–667

    Article  PubMed  CAS  Google Scholar 

  • Polti MA, Amoroso MJ, Abate CM (2010) Chromate reductase activity in Streptomyces sp. MC1. J. Gen. Appl. Microbiol. 56:11–18

    Article  PubMed  CAS  Google Scholar 

  • Polti MA, García RO, Amoroso MJ, Abate CM (2008) Bioremediation of chromium(VI) contaminated soil by Streptomyces sp. MC1. J Basic Microbiol 49:285–292

    Article  Google Scholar 

  • Polti MA, García R, Amoroso MJ, Abate CM (2009) Chromium (VI) soil bioremediation by Streptomyces sp. MC1. J Basic Microbiol 49:285–292

    Article  PubMed  CAS  Google Scholar 

  • Richards JW, Krumholz GD, Chval MS, Tisa LS (2002) Heavy metal resistance patterns of Frankia strains. Appl Environ Microbiol 2:923–927

    Article  Google Scholar 

  • Ryan MP, Williams DE, Chater RJ, Hutton BM, McPhail DS (2002) Why stainless steel corrodes. Nature 415:770–774

    Article  PubMed  CAS  Google Scholar 

  • Sanders CL (1986) Toxicological aspects of energy production. MacMillian, New York, pp 158–162

    Google Scholar 

  • Scoullos M, Vonkeman G, Thornton I, Makuch Z (2001) Mercury, cadmium, lead: handbook for sustainable heavy metals policy and regulation. Kluwer, Dordrecht, Nordic Council of Ministers

    Google Scholar 

  • Schmidt A, Haferburg G, Siñeriz M, Merten D, Buchel G, Kothe E (2005) Heavy metal resistance mechanisms in actinobacteria for survival in AMD contaminated soils. Chem Erde Geochem 65:131–144

    Article  CAS  Google Scholar 

  • Sinha S, Gupta AK (2005) Translocation of metals from fly ash amended soil in the plant of Sesbania cannabina L. Ritz: effect on antioxidants. Chemosphere 61:1204–1214

    Article  PubMed  CAS  Google Scholar 

  • Siñeriz ML, Kothe E, Abate CM (2009) Cadmium biosorption by Streptomyces sp. F4 isolated from former uranium mine. J Basic Microbiol 49:55–62

    Article  Google Scholar 

  • Stewart MA, Jardine PM, Brandt BC, Barnett MO (2003) Effects of contaminant concentration, aging, and soil properties on the bioaccessibility of Cr(III) and Cr(VI) in soil. Soil Sediment Contam 12:1–21

    Article  CAS  Google Scholar 

  • Srinath T, Verma T, Ramteke PW (2002) Chromium (VI) biosorption and bioaccumulation by chromate resistant bacteria. Chemosphere. 4:427–435

    Article  Google Scholar 

  • US NTP (2002) United States National Toxicology Program. The Report on Carcinogens, Tenth Edition. U.S. Department of Health and Human Services, National Institute of Health Public Health Service, National Institute of Environmental Health Sciences. (http://ehp.niehs.nih.gov/roc/toc10.html)

  • Viti C, Pace A, Giovannetti L (2003) Characterization of Cr(VI)-resistant bacteria isolated from chromium-contaminated soil by tannery activity. Curr Microbiol 46:1–5

    Article  PubMed  CAS  Google Scholar 

  • Vainshtein M, Kuschk P, Mattusch J, Vatsourina A, Wiessner A (2003) Model experiments on the microbial removal of chromium from contaminated groundwater. Water Res 37:1401–1405

    Article  PubMed  CAS  Google Scholar 

  • Wilson DN (1988) Cadmium – market trends and influences. In: Cadmium 87. Proceedings of the 6th International Cadmium Conference, London, Cadmium Association, pp 9–16

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Julia Amoroso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Amoroso, M.J., Abate, C.M. (2012). Bioremediation of Copper, Chromium and Cadmium by Actinomycetes from Contaminated Soils. In: Kothe, E., Varma, A. (eds) Bio-Geo Interactions in Metal-Contaminated Soils. Soil Biology, vol 31. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23327-2_17

Download citation

Publish with us

Policies and ethics