Nickel Hyperaccumulating Plants and Alyssum bertolonii: Model Systems for Studying Biogeochemical Interactions in Serpentine Soils

  • Alessio Mengoni
  • Lorenzo Cecchi
  • Cristina Gonnelli
Part of the Soil Biology book series (SOILBIOL, volume 31)


Alyssum bertolonii is one of the ten European species of Alyssum that hyperaccumulate nickel, and it was the first plant species reported to do so. The species has been suggested to be a useful indicator plant in prospecting for nickel, and the historically well-known connection between lithology and A. bertolonii was already recorded in 1583 by Cesalpino. In the last 20 years, this species has been the subject of intensive physiological, genetic, and botanical researches aimed at exploring the basis of its metal accumulation and tolerance and its life history and the genetic consequences of its restricted distribution being confined to heavy-metal-rich serpentine (ultramafic) substrates.

In the perspective of the present book, A. bertolonii could represent an excellent model and a particularly valuable resource for investigating the biogeochemical interactions in serpentine soils from the genetic/physiological level.


Serpentine Soil Metal Hyperaccumulation Metalliferous Soil Metallicolous Population Nonserpentine Soil 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Antonovics J, Bradshaw AD, Turner RG (1971) Heavy metal tolerance in plants. Adv Ecol Res 7:1–85CrossRefGoogle Scholar
  2. Assunçao AGL, ten Bookum WM, Nelissen HJM, Vooijs R, Schat H, Ernst WHO (2003) Differential metal-specific tolerance and accumulation patterns among Thlaspi caerulescens populations originating from different soil types. New Phytol 159:411–419CrossRefGoogle Scholar
  3. Assunçao AGL, Bleeker P, Ten Bookum WM, Vooijs R, Schat H (2008) Intraspecific variation of metal preference patterns for hyperaccumulation in Thlaspi caerulescens: evidence from binary metal exposures. Plant Soil 303:289–299CrossRefGoogle Scholar
  4. Baker AJM (1981) Accumulators and excluders – strategies in the response of plants to heavy metals. J Plant Nutr 3:643–654CrossRefGoogle Scholar
  5. Baker AJM (1987) Metal tolerance. New Phytol 106:93–111CrossRefGoogle Scholar
  6. Baker AJM, McGrath SP, Reeves RD, Smith JAC (2000) Metal hyperaccumulator plants: a review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. In: Terry N, Bañuelos G (eds) Phytoremediation of contaminated soil and water. Lewis, Boca Raton, FL, pp 85–107Google Scholar
  7. Bani A, Echevarria G, Sulçe S, Morel JL, Mullai A (2007) In-situ phytoextraction of Ni by a native population of Alyssum murale on an ultramafic site (Albania). Plant Soil 293:79–89CrossRefGoogle Scholar
  8. Bert V, Bonnin I, Saumitou-Laprade P, De Laguérie P, Petit D (2002) Do Arabidopsis halleri from nonmetallicolous populations accumulate zinc and cadmium more effectively than those from metallicolous populations? New Phytol 155:47–57CrossRefGoogle Scholar
  9. Boyd RS (2004) Ecology of metal hyperaccumulation. New Phytol 162:563–567CrossRefGoogle Scholar
  10. Boyd RS (2007) The defense hypothesis of elemental hyperaccumulation: status, challenges and new directions. Plant Soil 293:153–176CrossRefGoogle Scholar
  11. Boyd RS, Davis MA, Balkwill K (2008) Elemental patterns in Ni hyperaccumulating and non-hyperaccumulating ultramafic soil populations of Senecio coronatus. S Afr J Bot 74:158–162CrossRefGoogle Scholar
  12. Boyd RS, Jaffré T, Odom JW (1999) Variation in nickel content in the nickel-hyperaccumulating shrub Psychotria douarrei (Rubiaceae) from New Caledonia. Biotropica 31:403–410CrossRefGoogle Scholar
  13. Boyd RS, Martens SN (1992) The raison d'être for metal hyperaccumulation by plants. In: Baker AJM, Proctor J, Reeves RD (eds) The vegetation of ultramafic (serpentine) soils. Intercept, Andover, pp 279–289Google Scholar
  14. Brady KU, Kruckeberg AR, Bradshaw HD (2005) Evolutionary ecology of plant adaptation to serpentine soils. Ann Rev Ecol Evol Syst 36:243–266CrossRefGoogle Scholar
  15. Broadley MR, Willey NJ, Wilkins JC, Baker AJM, Mead A, White PJ (2001) Phylogenetic variation in heavy metal accumulation in angiosperms. New Phytol 152:9–27CrossRefGoogle Scholar
  16. Brooks RR (1983) Biological methods of prospecting for minerals. Wiley, New YorkGoogle Scholar
  17. Brooks RR (1998) Plants that hyperaccumulate heavy metals. CAB International, WallingfordGoogle Scholar
  18. Brooks RR (1987) Serpentine and its vegetation. A multidisciplinary approach. Dioscorides, PortlandGoogle Scholar
  19. Brooks RR, Lee J, Reeves RD, Jaffré T (1977) Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants. J Geochem Explor 7:49–57CrossRefGoogle Scholar
  20. Brooks RR, Yang XH (1984) Elemental levels and relationships in the endemic serpentine flora of the Great Dyke, Zimbabwe and their significance as controlling factors for this flora. Taxon 33:392–399CrossRefGoogle Scholar
  21. Cecchi L, Gabbrielli R, Arnetoli M, Gonnelli C, Hasko A, Selvi F (2010) Evolutionary lineages of nickel hyperaccumulation and systematics in European Alysseae (Brassicaceae): evidence from nrDNA sequence data. Ann Bot 106(5):751–767PubMedCrossRefGoogle Scholar
  22. Cecchi L, Selvi F (2009) Phylogenetic relationships of the monotypic genera Halacsya and Paramoltkia and the origins of serpentine adaptation in circummediterranean Lithospermeae (Boraginaceae): insights from ITS and matK DNA sequences. Taxon 58:700–714Google Scholar
  23. Cesalpino A (1583) De plantis libri XVI, FlorentiaeGoogle Scholar
  24. Chiarucci A (2003) Vegetation ecology and conservation on Tuscan ultramafic soils. Bot Rev 69(3):252–268CrossRefGoogle Scholar
  25. Chiarucci A, Maccherini S (2007) Long-term effects of climate and phosphorus fertilisation on serpentine vegetation. Plant Soil 293:133–144CrossRefGoogle Scholar
  26. Chiarucci A, Maccherini S, Bonini I, De Dominicis V (1999) Effects of nutrient addition on community productivity and structure of serpentine vegetation. Plant Biol 1:121–126CrossRefGoogle Scholar
  27. Chiarucci A, Robinson BH, Bonini I, Petit D, Brooks RR, De Dominicis V (1998) Vegetation of tuscan ultramafic soils in relation to edaphic and physical factors. Folia Geobot 33:113–131CrossRefGoogle Scholar
  28. Deng DM, Shu WS, Zhang J, Zou HL, Lin Z, Ye ZH, Wong MH (2007) Zinc and cadmium accumulation and tolerance in populations of Sedum alfredii. Environ Pollut 147:381–386PubMedCrossRefGoogle Scholar
  29. Ernst WHO (2006) Evolution of metal tolerance in higher plants. For Snow Landsc Res 80:251–274Google Scholar
  30. Escarré J, Lefèbvre C, Gruber W, Leblanc M, Lepart J, Rivière Y, Delay B (2000) Zinc and cadmium hyperaccumulation by Thlaspi caerulescens from metalliferous and nonmetalliferous sites in the Mediterranean area: implications for phytoremediation. New Phytol 145:429–437CrossRefGoogle Scholar
  31. Fernando DR, Woodrow IE, Bakkaus EJ, Collins RN, Baker AJM, Batianoff GN (2007) Variability of Mn hyperaccumulation in the Australian rainforest tree Gossia bidwillii (Myrtaceae). Plant Soil 293:145–152CrossRefGoogle Scholar
  32. Frérot H, Faucon M-P, Willems G, Godé C, Courseaux A, Darracq A, Verbruggen N, Saumitou-Laprade P (2010) Genetic architecture of zinc hyperaccumulation in Arabidopsis halleri: the essential role of QTL x environment interactions. New Phytol 187:355–367PubMedCrossRefGoogle Scholar
  33. Gabbrielli R, Mattioni C, Vergnano O (1991) Accumulation mechanisms and heavy metal tolerance of a nickel hyperaccumulator. J Plant Nutr 14:1067–1080CrossRefGoogle Scholar
  34. Gabbrielli R, Pandolfini T (1984) Effect of Mg2 and Ca2 on the response to nickel toxicity in a serpentine and nickel accumulating species. Physiol Plant 62:540–544CrossRefGoogle Scholar
  35. Galardi F, Corrales I, Mengoni A, Pucci S, Barletti L, Arnetoli M, Gabbrielli R, Gonnelli C (2007a) Intra-specific differences in nickel tolerance and accumulation in the Ni-hyperaccumulator Alyssum bertolonii. Environ Exp Bot 60:377–384CrossRefGoogle Scholar
  36. Galardi F, Mengoni A, Pucci S, Barletti L, Massi L, Barzanti R, Gabbrielli R, Gonnelli C (2007b) Intra-specific differences in mineral element composition in the Ni-hyperaccumulator Alyssum bertolonii: a survey of populations in nature. Environ Exp Bot 60:50–56CrossRefGoogle Scholar
  37. Huenneke LF, Hamburg SP, Koide R, Mooney HA, Vitousek PM (1990) Effects of soil resources on plant invasion and community structure in Californian serpentine grassland. Ecology 71:478–491CrossRefGoogle Scholar
  38. Jansen S, Broadley M, Robbrecht E, Smets E (2002) Aluminium hyperaccumulation in angiosperms: a review of its phylogenetic significance. Bot Rev 68:235–269CrossRefGoogle Scholar
  39. Jansen S, Watanabe T, Caris P, Geuten K, Lens F, Pyck N, Smets E (2004) The distribution and phylogeny of aluminium accumulating plants in the Ericales. Plant Biol 6:498–505PubMedCrossRefGoogle Scholar
  40. Jenny H (1980) The soil resource: origin and behavior. Ecol Stud 37:256–259Google Scholar
  41. Jiang RF, Ma DY, Zhao FJ, McGrath SP (2005) Cadmium hyperaccumulation protects Thlaspi caerulescens from leaf feeding damage by thrips (Frankliniella occidentalis). New Phytol 167:805–814PubMedCrossRefGoogle Scholar
  42. Kabata-Pendias A, Pendias H (1991) Trace elements in soils and plants, 2nd edn. CRC, Boca Raton, FLGoogle Scholar
  43. Kazakou E, Adamidis GC, Baker AJM, Reeves RD, Godino M, Dimitrakopoulos PG (2010) Species adaptation in serpentine soils in Lesbos Island (Greece): metal hyperaccumulation and tolerance. Plant Soil 332:369–385CrossRefGoogle Scholar
  44. Koch M, Al-Shehbaz IA (2009) Phylogeny of Brassica and wild relatives. In: Gupta SK (ed) Biology and breeding of crucifers. Taylor & Francis, Boca Raton, FL, pp 1–19CrossRefGoogle Scholar
  45. Krämer U (2010) Metal hyperaccumulation in plants. Ann Rev Plant Biol 61:517–534CrossRefGoogle Scholar
  46. Kruckeberg AR (1950) An experimental inquiry into the nature of endemism on serpentine soils. Ph.D. thesis. University of California, Berkeley, p 154Google Scholar
  47. Kruckeberg AR (1954) The ecology of serpentine soils: a symposium III. Plant species in relation to serpentine soils. Ecology 35:267–274Google Scholar
  48. Kruckeberg AR (2002) Geology and plant life. University Press, WashingtonGoogle Scholar
  49. Kruckeberg AR, Kruckeberg AL (1990) Endemic metallophytes: their taxonomic, genetic and evolutionary attributes. In: Shaw AJ (ed) Heavy metal tolerance in plants: evolutionary aspects. CRC, Boca Raton, FL, pp 301–312Google Scholar
  50. Küpper H, Lombi E, Zhao F-J, Wieshammer G, McGrath SP (2001) Cellular compartmentation of nickel in the hyperaccumulators Alyssum lesbiacum, Alyssum bertolonii and Thlaspi goesingense. J Exp Bot 52:2291–2300PubMedCrossRefGoogle Scholar
  51. Lefèbvre C, Vernet P (1990) Microevolutionary processes on contaminated deposits. In: Shaw AJ (ed) Heavy metal tolerance in plants: evolutionary aspects. CRC, Boca Raton, FL, pp 286–297Google Scholar
  52. Macnair MR (2002) Within and between population genetic variation for zinc accumulation in Arabidopsis halleri. New Phytol 155:59–66CrossRefGoogle Scholar
  53. Macnair MR (2003) The hyperaccumulation of metals by plants. Adv Bot Res 40:63–105CrossRefGoogle Scholar
  54. Marmiroli M, Gonnelli C, Maestri E, Gabbrielli R, Marmiroli N (2004) Localisation of nickel and mineral nutrients Ca, K, Fe, Mg with scanning electron microscopy microanalysis in tissues of the nickel-hyperaccumulator Alyssum bertolonii Desv. and the non-accumulator Alyssum montanum L. Plant Biosyst 138:231–243CrossRefGoogle Scholar
  55. Mengoni A, Baker AJM, Bazzicalupo M, Reeves RD, Adigüzel N, Chianni E, Galardi F, Gabbrielli R, Gonnelli C (2003a) Evolutionary dynamics of nickel hyperaccumulation in Alyssum revealed by ITS nrDNA analysis. New Phytol 159:691–699CrossRefGoogle Scholar
  56. Mengoni A, Barabesi C, Gonnelli C, Galardi F, Gabbrielli R, Bazzicalupo M (2001) Genetic diversity of heavy metal tolerant populations of Silene paradoxa L.: a chloroplast microsatellite analysis. Mol Ecol 10:1909–1916PubMedCrossRefGoogle Scholar
  57. Mengoni A, Gonnelli C, Brocchini E, Galardi F, Pucci S, Gabbrielli R, Bazzicalupo M (2003b) Chloroplast genetic diversity and biogeography in the serpentine endemic Ni-hyperaccumulator Alyssum bertolonii. New Phytol 157:349–356CrossRefGoogle Scholar
  58. Mengoni A, Gonnelli C, Galardi F, Gabbrielli R, Bazzicalupo M (2000) Genetic diversity and heavy metal tolerance in populations of Silene paradoxa L. (Caryophyllaceae): a RAPD analysis. Mol Ecol 9:1319–1324PubMedCrossRefGoogle Scholar
  59. Mengoni A, Gonnelli C, Hakvoort HW, Galardi F, Bazzicalupo M, Gabbrielli R, Schat H (2003c) Evolution of copper-tolerance and increased expression of a 2b-type metallothionein gene in Silene paradoxa L. populations. Plant Soil 257:451–457CrossRefGoogle Scholar
  60. Mengoni A, Grassi E, Barzanti R, Biondi EG, Gonnelli C, Kim CK, Bazzicalupo M (2004) Genetic diversity of bacterial communities of serpentine soil and of rhizosphere of the nickel-hyperaccumulator plant Alyssum bertolonii. Microb Ecol 48:209–217PubMedCrossRefGoogle Scholar
  61. Mengoni A, Schat H, Vangronsveld J (2010) Plants as extreme environments? Ni-resistant bacteria and Ni-hyperaccumulators of serpentine flora. Plant Soil 331:5–16CrossRefGoogle Scholar
  62. Minguzzi C, Vergnano O (1948) Il contenuto di nichel nelle ceneri di Alyssum bertolonii. Atti Soc Tosc Sci Nat 55:49–74Google Scholar
  63. Mota JF, Medina-Cazorla JM, Navarro FB, Pérez-García FJ, Pérez-Latorre A, Sánchez-Gómez P, Torres JA, Benavente A, Blanca G, Gil C, Lorite J, Merlo ME (2008) Dolomite flora of the Baetic Ranges glades (South Spain). Flora 203:359–375CrossRefGoogle Scholar
  64. Novák FA (1928) Quelques remarques relative au problème de la végétation sur les terrains serpentiniques. Preslia 6:42–71Google Scholar
  65. Nyberg Berglund AB, Dahlgren S, Westerbergh A (2004) Evidence for parallel evolution and site-specific selection of serpentine tolerance in Cerastium alpinum during the colonization of Scandinavia. New Phytol 161:199–209CrossRefGoogle Scholar
  66. Patterson TB, Givnish TJ (2004) Geographic cohesion, chromosomal evolution, parallel adaptive radiations, and consequent floral adaptations in Calochortus (Calochortaceae): evidence from a cpDNA phylogeny. New Phytol 161:253–264CrossRefGoogle Scholar
  67. Peer WA, Mamoudian M, Lahner B, Reeves RD, Murphy AS, Salt DE (2003) Identifying model metal hyperaccumulating plants: germplasm analysis of 20 Brassicaceae accessions from a wide geographical area. New Phytol 159:421–430CrossRefGoogle Scholar
  68. Pichi Sermolli R (1948) Flora e vegetazione delle serpentine e delle altre ofioliti dell’alta valle del Tevere (Toscana). Webbia 17:1–380Google Scholar
  69. Pollard AJ, Baker AJM (1997) Deterrence of herbivory by zinc hyperaccumulation in Thlaspi caerulescens (Brassicaceae). New Phytol 135:655–658CrossRefGoogle Scholar
  70. Pollard AJ, Dandridge Powell K, Harper FA, Smith JAC (2002) The genetic basis of metal hyperaccumulation in plants. Crit Rev Plant Sci 21:539–566CrossRefGoogle Scholar
  71. Proctor J (1971) The plant ecology of serpentine II. Plant responses to serpentine soils. J Ecol 59:397–410CrossRefGoogle Scholar
  72. Proctor J, Nagy L (1992) Ultramafic rocks and their vegetation: an overview. In: Baker AJM, Proctor J, Reeves RD (eds) The vegetation of ultramafic (serpentine) soils. Intercept, Andover, pp 469–494Google Scholar
  73. Proctor J, Woodell SRJ (1975) The ecology of serpentine soils. Adv Ecol Res 9:255–365CrossRefGoogle Scholar
  74. Quintela-Sabarís C, Vendramin G, Castro-Fernández D, Fraga M (2010) Chloroplast microsatellites reveal that metallicolous populations of the Mediterranean shrub Cistus ladanifer L. have multiple origins. Plant Soil 334:161–174CrossRefGoogle Scholar
  75. Rajakaruna N, Baldwin BG, Chan R, Desrochers AM, Bohm BA, Whitton J (2003) Edaphic races and phylogenetic taxa in the Lasthenia californica complex (Asteraceae: eliantheae): an hypothesis of parallel evolution. Mol Ecol 12:1675–1679PubMedCrossRefGoogle Scholar
  76. Rascio N, Navari-Izzo F (2011) Heavy metal hyperaccumulating plants: How and why do they do it? And what makes them so interesting? Plant Sci 180:169–181PubMedCrossRefGoogle Scholar
  77. Richau KH, Schat H (2009) Intraspecific variation of nickel and zinc accumulation and tolerance in the hyperaccumulator Thlaspi caerulescens. Plant Soil 314:253–262CrossRefGoogle Scholar
  78. Roberts BA, Proctor J (1992) The ecology of areas with serpentinized rocks: a world view. Kluwer, DordrechtGoogle Scholar
  79. Robinson BH, Brooks RR, Kirkman JH, Gregg PEH, Alvarez HV (1997) Edaphic influences on a New Zealand ultramafic (“serpentine”) flora: a statistical approach. Plant Soil 188:11–20CrossRefGoogle Scholar
  80. Slingsby DR, Brown BH (1977) Nickel in British serpentine soils. J Ecol 65:597–618CrossRefGoogle Scholar
  81. Stefanović V, Tan K, Iatrou G (2003) Distribution of the endemic Balkan flora on serpentine I. – obligate serpentine endemics. Plant Syst Evol 242:149–170CrossRefGoogle Scholar
  82. Takhtajan AL (1986) The floristic regions of the World. University of California Press, BerkeleyGoogle Scholar
  83. Taylor SI, Macnair MR (2006) Within and between population variation for zinc and nickel accumulation in two species of Thlaspi (Brassicaceae). New Phytol 169:505–514PubMedCrossRefGoogle Scholar
  84. Vassilev A, Schwitzguébel JP, Thewys T, Van der Lelie D, Vangronsveld J (2004) The use of plants for remediation of metal-contaminated soils. Sci World J 4:9–34Google Scholar
  85. Vekemans X, Lefèbvre C (1997) On the evolution of heavy metal tolerant populations in Armeria maritima: evidence from allozyme variation and reproductive barriers. J Evol Biol 10:175–191CrossRefGoogle Scholar
  86. Verbruggen N, Hermans C, Schat H (2009) Molecular mechanisms of metal hyperaccumulation in plants. New Phytol 181:759–776PubMedCrossRefGoogle Scholar
  87. Vergnano Gambi O (1992) The distribution and ecology of the vegetation of ultramafic soils in Italy. In: Roberts BA, Proctor J (eds) The ecology of areas with serpentinized rocks – a world view. Kluwer, Dordrecht, The Netherlands, pp 217–247CrossRefGoogle Scholar
  88. Vergnano Gambi O (1993) Gli adattamenti delle piante. In: Le ofioliti dell’Appennino Emiliano (ed) Regione Emilia-Romagna, pp 103–128Google Scholar
  89. Walker RB (1954) The ecology of serpentine soils: a symposium II. Factors affecting plant growth on serpentine soils. Ecology 35:259–266Google Scholar
  90. Warwick SI, Sauder CA, Al-Shehbaz IA (2008) Phylogenetic relationships in the tribe Alysseae (Brassicaceae) based on nuclear ribosomal ITS DNA sequences. Botany 86:315–336CrossRefGoogle Scholar
  91. Whiting SN, Reeves RD, Richards D, Johnson MS, Cooke JA, Malaisse F, Paton A, Smith JAC, Angle JS, Chaney RL, Ginocchio R, Jaffré T, Johns R, McIntyre T, Purvis OW, Salt DE, Schat H, Baker AJM (2004) Research priorities for conservation of metallophyte biodiversity and their potential for restoration and site remediation. Rest Ecol 12:106–116CrossRefGoogle Scholar
  92. Whittaker RH (1954) The ecology of serpentine soils: a symposium. I. Introduction. Ecology 35:258–259CrossRefGoogle Scholar
  93. Willems G, Frérot H, Gennen J, Salis P, Saumitou-Laprade P, Verbruggen N (2010) Quantitative trait loci analysis of mineral element concentrations in an Arabidopsis halleri x Arabidopsis lyrata petraea F2 progeny grown on cadmium-contaminated soil. New Phytol 187:368–379PubMedCrossRefGoogle Scholar
  94. Yang X, Li T, Yang J, He Z, Lu L, Meng F (2006) Zinc compartmentation in root, transport into xylem, and absorption into leaf cells in the hyperaccumulating species of Sedum alfredii Hance. Planta 224:185–195PubMedCrossRefGoogle Scholar
  95. Zhang X-H, Liu J, Huang H-T, Chen J, Zhu Y-N, Wang D-Q (2007) Chromium accumulation by the hyperaccumulator plant Leersia hexandra Swartz. Chemosphere 67:1138–1143PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Alessio Mengoni
    • 1
  • Lorenzo Cecchi
    • 1
  • Cristina Gonnelli
    • 1
  1. 1.Department of Evolutionary BiologyUniversity of FirenzeFirenzeItaly

Personalised recommendations