Distilling Relevant Documents by Means of Dynamic Quantum Clustering

  • Emanuele Di Buccio
  • Giorgio Maria Di Nunzio
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6931)

Abstract

Dynamic Quantum Clustering (DQC) is a recent clustering technique based on physical intuition from quantum mechanics. Clusters are identified as the minima of the potential function of the Schrödinger equation. In this poster, we apply this technique to explore the possibility to select highly relevant documents relative to a query of a user. In particular, we analyze the clusters produced by DQC with a standard test collection.

Keywords

Relevant Document Document Frequency Test Collection Physical Intuition Propose Cluster Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Robertson, S.E., Jones, K.S.: Relevance weighting of search terms. Journal of the American Society for Information Science 27(3), 129–146 (1976)CrossRefGoogle Scholar
  2. 2.
    Varshavsky, R., Linial, M., Horn, D.: Compact: A comparative package for clustering assessment. In: Chen, G., Pan, Y., Guo, M., Lu, J. (eds.) ISPA-WS 2005. LNCS, vol. 3759, pp. 159–167. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Weinstein, M., Horn, D.: Dynamic quantum clustering: A method for visual exploration of structures in data. Phys. Rev. E 80(6), 066117 (2009)CrossRefGoogle Scholar
  4. 4.
    Xu, R., Ii: Survey of clustering algorithms. IEEE Transactions on Neural Networks 16(3), 645–678 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Emanuele Di Buccio
    • 1
  • Giorgio Maria Di Nunzio
    • 1
  1. 1.Department of Information EngineeringUniversity of PaduaPaduaItaly

Personalised recommendations