Negation for Document Re-ranking in Ad-hoc Retrieval

  • Pierpaolo Basile
  • Annalina Caputo
  • Giovanni Semeraro
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6931)

Abstract

Information about top-ranked documents plays a key role to improve retrieval performance. One of the most common strategies which exploits this kind of information is relevance feedback. Few works have investigated the role of negative feedback on retrieval performance. This is probably due to the difficulty of dealing with the concept of non-relevant document. This paper proposes a novel approach to document re-ranking, which relies on the concept of negative feedback represented by non-relevant documents. In our model the concept of non-relevance is defined as a quantum operator in both the classical Vector Space Model and a Semantic Document Space. The latter is induced from the original document space using a distributional approach based on Random Indexing. The evaluation carried out on a standard document collection shows the effectiveness of the proposed approach and opens new perspectives to address the problem of quantifying the concept of non-relevance.

Keywords

Relevance Feedback Mean Average Precision Ideal Document Context Vector Quantum Negation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agirre, E., Di Nunzio, G.M., Mandl, T., Otegi, A.: CLEF 2009 Ad Hoc Track Overview: Robust-WSD Task. In: Peters, C., Di Nunzio, G.M., Kurimo, M., Mostefa, D., Penas, A., Roda, G. (eds.) CLEF 2009. LNCS, vol. 6241, pp. 36–49. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    Birkhoff, G., von Neumann, J.: The logic of quantum mechanics. Annals of Mathematics 37(4), 823–843 (1936)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Caputo, A., Basile, P., Semeraro, G.: From fusion to re-ranking: a semantic approach. In: Crestani, F., Marchand-Maillet, S., Chen, H.H., Efthimiadis, E.N., Savoy, J. (eds.) SIGIR, pp. 815–816. ACM, New York (2010)Google Scholar
  4. 4.
    Danilowicz, C., Balinski, J.: Document ranking based upon Markov chains. Information Processing & Management 37(4), 623–637 (2001)CrossRefMATHGoogle Scholar
  5. 5.
    Dasgupta, S., Gupta, A.: An elementary proof of a theorem of Johnson and Lindenstrauss. Random Structures & Algorithms 22(1), 60–65 (2003)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Diaz, F.: Regularizing ad hoc retrieval scores. In: CIKM 2005: Proceedings of the 14th ACM International Conference on Information and Knowledge Management, pp. 672–679. ACM, New York (2005)Google Scholar
  7. 7.
    Harris, Z.: Mathematical Structures of Language. Interscience, New York (1968)MATHGoogle Scholar
  8. 8.
    Kanerva, P.: Sparse Distributed Memory. MIT Press, Cambridge (1988)MATHGoogle Scholar
  9. 9.
    Kozorovitzky, A., Kurland, O.: From ”identical” to ”similar”: Fusing retrieved lists based on inter-document similarities. In: Azzopardi, L., Kazai, G., Robertson, S., Rüger, S., Shokouhi, M., Song, D., Yilmaz, E. (eds.) ICTIR 2009. LNCS, vol. 5766, pp. 212–223. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Kurland, O.: Re-ranking search results using language models of query-specific clusters. Information Retrieval 12(4), 437–460 (2009)CrossRefGoogle Scholar
  11. 11.
    Kurland, O., Lee, L.: Corpus structure, language models, and ad hoc information retrieval. In: SIGIR 2004: Proceedings of the 27th Annual Int. ACM SIGIR Conf. on Research and Development in Information Retrieval, pp. 194–201. ACM, New York (2004)Google Scholar
  12. 12.
    Landauer, T.K., Dumais, S.T.: A Solution to Plato’s Problem: The Latent Semantic Analysis Theory of Acquisition, Induction, and Representation of Knowledge. Psychological Review 104(2), 211–240 (1997)CrossRefGoogle Scholar
  13. 13.
    Liu, X., Croft, W.B.: Cluster-based retrieval using language models. In: SIGIR 2004: Proceedings of the 27th Annual Int. ACM SIGIR Conf. on Research and Development in Information Retrieval, pp. 186–193. ACM, New York (2004)Google Scholar
  14. 14.
    van Rijsbergen, C.J.: Information Retrieval. Butterworth, London (1979)MATHGoogle Scholar
  15. 15.
    Robertson, S., Zaragoza, H., Taylor, M.: Simple BM25 extension to multiple weighted fields. In: CIKM 2004: Proceedings of the Thirteenth ACM Int. Conf. on Information and Knowledge Management, pp. 42–49. ACM, New York (2004)Google Scholar
  16. 16.
    Ruthven, I., Lalmas, M.: A survey on the use of relevance feedback for information access systems. Knowledge Engineering Review 18(2), 95–145 (2003)CrossRefGoogle Scholar
  17. 17.
    Sahlgren, M.: The Word-Space Model: Using distributional analysis to represent syntagmatic and paradigmatic relations between words in high-dimensional vector spaces. Ph.D. thesis, Stockholm University, Department of Linguistics (2006)Google Scholar
  18. 18.
    Salton, G., Buckley, C.: Improving retrieval performance by relevance feedback. Journal of the American Society for Information Science 41(4), 288–297 (1990)CrossRefGoogle Scholar
  19. 19.
    Singhal, A., Mitra, M., Buckley, C.: Learning routing queries in a query zone. In: SIGIR 1997: Proceedings of the 20th Annual Int. ACM SIGIR Conf. on Research and Development in Information Retrieval, pp. 25–32. ACM, New York (1997)CrossRefGoogle Scholar
  20. 20.
    Tseng, Y., Tsai, C., Chuang, Z.: On the robustness of document re-ranking techniques: a comparison of label propagation, knn, and relevance feedback. In: Proceedings of NTCIR-6 Workshop (2007)Google Scholar
  21. 21.
    Wang, X., Fang, H., Zhai, C.: A study of methods for negative relevance feedback. In: SIGIR 2008: Proceedings of the 31st Annual Int. ACM SIGIR Conf. on Research and Development in Information Retrieval, pp. 219–226. ACM, New York (2008)CrossRefGoogle Scholar
  22. 22.
    Widdows, D., Peters, S.: Word vectors and quantum logic: Experiments with negation and disjunction. Mathematics of language (8), 141–154 (2003)Google Scholar
  23. 23.
    Widdows, D.: Orthogonal negation in vector spaces for modelling word-meanings and document retrieval. In: ACL 2003: Proceedings of the 41st Annual Meeting on Association for Computational Linguistics, pp. 136–143. Association for Computational Linguistics, Morristown (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Pierpaolo Basile
    • 1
  • Annalina Caputo
    • 1
  • Giovanni Semeraro
    • 1
  1. 1.Dept. of Computer ScienceUniversity of Bari “Aldo Moro”BariItaly

Personalised recommendations