A Methodological Approach for Ontologising and Aligning Health Level Seven (HL7) Applications

  • Ratnesh Sahay
  • Ronan Fox
  • Antoine Zimmermann
  • Axel Polleres
  • Manfred Hauswrith
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6908)


Healthcare applications are complex in the way data and schemas are organised in their internal systems. Widely deployed healthcare standards like Health Level Seven (HL7) V2 are designed using flexible schemas which allow several choices when constructing clinical messages. The recently emerged HL7 V3 has a centrally consistent information model that controls terminologies and concepts shared by V3 applications. V3 information models are arranged in several layers (abstract to concrete layers). V2 and V3 systems raise interoperability challenges: firstly, how to exchange clinical messages between V2 and V3 applications, and secondly, how to integrate globally defined clinical concepts with locally constructed concepts. The use of ontologies for interoperable healthcare applications has been advocated by domain and knowledge representation specialists. This paper addresses two main areas of an ontology-based integration framework: (1) an ontology building methodology for the HL7 standard where ontologies are developed in separated global and local layers; and (2) aligning V2 and V3 ontologies. We propose solutions that: (1) provide a semi-automatic mechanism to build HL7 ontologies; (2) provide a semi-automatic mechanism to align HL7 ontologies and transform underlying clinical messages. The proposed methodology has developed HL7 ontologies of 300 concepts in average for each version. These ontologies and their alignments are deployed and evaluated under a semantically-enabled healthcare integration framework.


Health Level Seven (HL7) Semantic Interoperability Ontology Building Methodology Ontology Alignment 


  1. 1.
    Bicer, V., Laleci, G.B., Dogac, A., Kabak, Y.: Artemis Message Exchange Framework: Semantic Interoperability of Exchanged Messages in the Healthcare Domain. SIGMOD Record (ACM Special Interest Group on Management of Data) (2005)Google Scholar
  2. 2.
    de Bruijn, J., Fensel, D., Keller, U., Kifer, M., Krummenacher, R., Lausen, H., Polleres, A., Predoiu, L.: Web Service Modeling Language (WSML), w3C member submission (June 2005)Google Scholar
  3. 3.
    Castano, S., Ferrara, A., Montanelli, S.: Matching Ontologies in Open Networked Systems: Techniques and Applications. In: Spaccapietra, S., Atzeni, P., Chu, W.W., Catarci, T., Sycara, K. (eds.) Journal on Data Semantics V. LNCS, vol. 3870, pp. 25–63. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Euzenat, J., Polleres, A., Scharffe, F.: SPARQL Extensions for Processing Alignments. IEEE Intelligent Systems 23(6), 82–84 (2008)Google Scholar
  5. 5.
    Euzenat, J., Shvaiko, P.: Ontology Matching. Springer, Heidelberg (2007)zbMATHGoogle Scholar
  6. 6.
    Fernández-López, M., Gómez-Pérez, A., Juristo, N.: Methontology: from ontological art towards ontological engineering. In: Proc. Symposium on Ontological Engineering of AAAI (1997)Google Scholar
  7. 7.
    Fernández-López, M., Gómez-Pérez, A.: Overview and analysis of methodologies for building ontologies. Knowl. Eng. Rev. (2002)Google Scholar
  8. 8.
    Hitzler, P., Krötzsch, M., Parsia, B., Patel-Schneider, P., Rudolph, S.: OWL 2 Web Ontology Language Primer W3C Recommendation. Tech. rep., World Wide Web Consortium (W3C) (October 2009)Google Scholar
  9. 9.
    Hu, W., Qu, Y.: Falcon-AO: A Practical Ontology Matching System. Journal of Web Semantics 6(3), 237–239 (2008)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Noy, N.F., Musen, M.A.: The PROMPT suite: interactive tools for ontology merging and mapping. Int’l Journal of Human-Computer Studies 59(6), 983–1024 (2003)CrossRefGoogle Scholar
  11. 11.
    Oemig, F., Blobel, B.: An Ontology Architecture for HL7 V3: Pitfalls and Outcomes. In: World Congress on Medical Physics and Biomedical Engineering (2009)Google Scholar
  12. 12.
    Orgun, B.: Interoperabilit In Heterogeneous Medical Information Systems Using Smart Mobile Agents And Hl7 (Emags). Master’s thesis, Macquarie University, Australia (2003)Google Scholar
  13. 13.
    Pinto, H.S., Staab, S., Tempich, C.: DILIGENT: Towards a fine-grained methodology for DIstributed, Loosely-controlled and evolvInG Engineering of oNTologies. In: 16th European Conf. on AI (ECAI), pp. 393–397. IOS Press, Amsterdam (2004)Google Scholar
  14. 14.
    Polleres, A., Scharffe, F., Schindlauer, R.: SPARQL++ for mapping between RDF vocabularies. In: Chung, S. (ed.) OTM 2007, Part I. LNCS, vol. 4803, pp. 878–896. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Rector, A.L., Qamar, R., Marley, T.: Binding ontologies and coding systems to electronic health records and messages. Applied Ontologies 4(1), 51–69 (2009)Google Scholar
  16. 16.
    Sahay, R., Akhtar, W., Fox, R.: PPEPR: Plug and Play Electronic Patient Records. In: Proceedings of the 23rd Annual ACM Symposium on Applied Computing, the Semantic Web and Applications (SWA) Track. ACM, Fortaleza (2008)Google Scholar
  17. 17.
    Staab, S., Studer, R., Schnurr, H.P., Sure, Y.: Knowledge Processes and Ontologies. IEEE Intelligent Systems 16, 26–34 (2001)Google Scholar
  18. 18.
    Uschold, M.: Building Ontologies: Towards a Unified Methodology. In: 16th Annual Conf. of the British Computer Society Specialist Group on Expert Systems, pp. 16–18 (1996)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2011

Authors and Affiliations

  • Ratnesh Sahay
    • 1
  • Ronan Fox
    • 1
  • Antoine Zimmermann
    • 2
  • Axel Polleres
    • 1
    • 3
  • Manfred Hauswrith
    • 1
  1. 1.Digital Enterprise Research Institute (DERI)NUIGGalwayIreland
  2. 2.LIRIS, UMR5205INSA-LyonFrance
  3. 3.Siemens AG ÖsterreichViennaAustria

Personalised recommendations