Advertisement

Shifting Primes: Extension of Pseudo-Mersenne Primes to Optimize ECC for MSP430-Based Future Internet of Things Devices

  • Leandro Marin
  • Antonio J. Jara
  • Antonio F. G. Skarmeta
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6908)

Abstract

Security support for small and smart devices is one of the most important issues in the Future Internet of things, since technologies such as 6LoWPAN are opening the access to the real world through Internet. 6LoWPAN devices are highly constrained in terms of computational capabilities, memory, communication bandwidth, and battery power. Therefore, in order to support security, it is necessary to implement new optimized and scalable cryptographic mechanisms, which provide security, authentication, privacy and integrity to the communications. Our research is focused on the mathematical optimization of cryptographic primitives for Public Key Cryptography (PKC) based on Elliptic Curve Cryptography (ECC) for 6LoWPAN. Specifically, the contribution presented is a set of mathematical optimizations and its implementation for ECC in the 6LoWPAN devices based on the microprocessor Texas Instrument MSP430. The optimizations presented are focused on Montgomery multiplication operation, which has been implemented with bit shifting, and the definition of special pseudo-Mersenne primes, which we have denominated ”shifting primes”. These optimizations allow to implement the scalar multiplication (operation used for ECC operations) reaching a time of 1,2665 seconds, which is 42,8% lower of the reached by the state of the art solution TinyECC (2,217 seconds).

Keywords

Security 6LoWPAN ECC pseudo-Mersenne primes shifting prime Internet of Things 

References

  1. 1.
    Montenegro, G., Kushalnagar, N., Hui, J., Culler, D.: Transmission of IPv6 Packets over IEEE 802.15.4 Networks. RFC 4944 (2007)Google Scholar
  2. 2.
    Nobles, P., Ali, S., Chivers, H.: Improved Estimation of Trilateration Distances for Indoor Wireless Intrusion Detection. Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications 2(1) (2011) ISSN: 2093-5374Google Scholar
  3. 3.
    Zampolli, S., Elmi, I., et al.: Ultra-low-power components for an RFID Tag with physical and chemical sensors. Journal of Microsystem Technologies 14(4), 581–588 (2008)CrossRefGoogle Scholar
  4. 4.
    Norair, J.P.: DASH7: ultra-low power wireless data technology (2009)Google Scholar
  5. 5.
    Cohen, H., Miyaji, A., Ono, T.: Efficient Elliptic Curve Exponentiation. In: Han, Y., Quing, S. (eds.) ICICS 1997. LNCS, vol. 1334. Springer, Heidelberg (1997)Google Scholar
  6. 6.
    Cohen, H., Miyaji, A., Ono, T.: Efficient Elliptic Curve Exponentiation Using Mixed Coordinates. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 51–65. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  7. 7.
    Montgomery, P.: Modular Multiplication Without Trial Division. Math. Computation 44, 519–521 (1985)zbMATHCrossRefGoogle Scholar
  8. 8.
    802.15.4-2003, IEEE Standard, Wireless medium access control and physical layer specifications for low-rate wireless personal area networks (May 2003)Google Scholar
  9. 9.
    Liu, A., Ning, P.: TinyECC: A Configurable Library for Elliptic Curve Cryptography in Wireless Sensor Networks. In: 7th International Conference on Information Processing in Sensor Networks, SPOTS Track, USA, pp. 245–256 (2008)Google Scholar
  10. 10.
    Seo, S.C., Han, D.G., et al.: TinyECCK: Efficient Elliptic Curve Cryptography Implementation over GF(2m) on 8-bit MICAz Mote. IEICE Transactions on Info and Systems E91-D(5), 1338–1347 (2008)CrossRefGoogle Scholar
  11. 11.
    Szczechowiak, P., Oliveira, L.B., et al.: NanoECC: Testing the Limits of Elliptic Curve Crytography in Sensor Networks. In: UNICAMP, Brasil (2008)Google Scholar
  12. 12.
    Gura, N., Patel, A., et al.: Comparing Elliptic Curve Cryptography and RSA on 8-bit CPUs. In: Workshop on Cryptographic Hardware and Embedded Systems (2004)Google Scholar
  13. 13.
    Hitchcock, Y., Dawson, E., et al.: Implementing an efficient elliptic curve cryptosystem over GF(p) on a smart card. ANZIAM Journal (2003)Google Scholar
  14. 14.
    Uhsadel, L., Poschmann, A., Paar, C.: Enabling Full-Size Public-Key Algorithms on 8-bit Sensor Nodes. In: European Workshop on Security and Privacy in Ad hoc and Sensor Networks (2007)Google Scholar
  15. 15.
    Hodjat, A., Batina, L., et al.: HW/SW Co-Design of a Hyperelliptic Curve Cryptosystem using a Microcode Instruction Set Coprocessor Integration. VLSI Journal 40(1), 45–51 (2007)CrossRefGoogle Scholar
  16. 16.
    Ayuso, J., Marin, L., Jara, A., Skarmeta, A.F.G.: Optimization of Public Key Cryptography (RSA and ECC) for 8-bits Devices based on 6LoWPAN. In: 1st International Workshop on the Security of the Internet of Things, Tokyo, Japan (2010)Google Scholar
  17. 17.
    Bierl, L.: MSP430 Family Mixed-Signal Microcontroller Application Reports, pp. 478–480 (2000), http://focus.ti.com.cn/cn/lit/an/slaa024/slaa024.pdf
  18. 18.
    Locke, G., Gallagher, P.: FIPS PUB 186-3: Digital Signature Standard (DSS). National Institute of Standards and Technology (2009)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2011

Authors and Affiliations

  • Leandro Marin
    • 1
  • Antonio J. Jara
    • 1
  • Antonio F. G. Skarmeta
    • 1
  1. 1.Computer Science FacultyUniversity of MurciaMurciaSpain

Personalised recommendations