Evaluation of Topological Vulnerability of the Internet under Regional Failures

  • Wei Peng
  • Zimu Li
  • Jinshu Su
  • Muwei Dong
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6908)


Natural disasters often lead to regional failures which can fail down network nodes and links co-located in a large geographical area. It will be beneficial to improve the resilience of a network by assessing its vulnerability under regional failures. In this paper, we propose the concept of α-critical-distance to evaluate the importance of a network node in the geographical space with a given failure impact ratio α. Theoretical analysis and a polynomial time algorithm to find the minimal α-critical-distance of a network are presented. Using real Internet topology data, we conduct experiments to compute the minimal α-critical-distances for different networks. The computational results demonstrate the differences of vulnerability of different networks. We also find that with the same impact ratio α, the studied topologies have smaller α-critical-distances when the network performance is measured by network efficiency than giant component size.


network topology vulnerability regional failure critical distance algorithm 


  1. 1.
    Doyle, J.C., Alderson, D., Li, L., Lowet, S., et al.: The ‘Robust Yet Fragile’ Nature of the Internet. PNAS 102(41) (2005)Google Scholar
  2. 2.
    Latora, V., Marchiori, M.: Efficient Behavior of Small-World Networks. Phys. Rev. Lett. 87, 198–701 (2001)CrossRefGoogle Scholar
  3. 3.
    Nagurney, A., Qiang, Q.: A Network Efficiency Measure with Application to Critical Infrastructure Networks. J. Glob. Optim. 40, 261–275 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Wu, J., Barahona, M., Tan, Y.-J., Deng, H.-Z.: Natural Connectivity of Complex Networks. Chinese Physical Lett. 27(7), 078902 (2010)CrossRefGoogle Scholar
  5. 5.
    Jamakovic, A., Uhlig, S.: Influence of the network structure on robustness. In: 15th IEEE Int. Conf. on Networks (ICON), Adelaide, Australia, pp. 278–283 (2007)Google Scholar
  6. 6.
    Dinh, T.N., Xuan, Y., Thai, M.T., Pardalos, P.M.: On New Approaches of Assessing Network Vulnerability: Hardness and Approximation. IEEE/ACM Trans. on Networking, under revision (2011)Google Scholar
  7. 7.
    Borgatti, S.P., Everett, M.G.: A graph-theoretic perspective on centrality. Social Networks 28(4), 466–484 (2006)CrossRefGoogle Scholar
  8. 8.
    Wehmuth, K., Ziviani, A.: Distributed Algorithm to Locate Critical Nodes to Network Robustness based on Spectral Analysis. CoRR abs/1101.5019 (2011)Google Scholar
  9. 9.
    Kermarrec, A.-M., Merrer, E.L., Sericola, B., Trédan, G.: Second order centrality: Distributed assessment of nodes criticity in complex networks. Computer Communications 34, 619–628 (2011)CrossRefGoogle Scholar
  10. 10.
    Arulselvan, A., Commander, C.W., Elefteriadou, L., Pardalos, P.M.: Detecting Critical Nodes in Sparse Graphs (2009)Google Scholar
  11. 11.
    Crescenzo, G.D., Ghosh, A., Kampasi, A., Talpade, R., Zhang, Y.: Detecting Anomalies in Active Insider Stepping Stone Attacks. J. Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications 2(1), 103–120 (2011)Google Scholar
  12. 12.
    Pieters, W.: Representing Humans in System Security Models: An Actor-Network Approach. J. Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications 2(1), 75–92 (2011)Google Scholar
  13. 13.
    Hansen, A.F., Kvalbein, A., Čičić, T., Gjessing, S.: Resilient Routing Layers for Network Disaster Planning. In: Lorenz, P., Dini, P. (eds.) ICN 2005. LNCS, vol. 3421, pp. 1097–1105. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Grubesic, T.H., Murray, A.T.: Vital Nodes, Interconnected Infrastructures, and the Geographies of Network Survivability. Annals of the Association of American Geographers 96(1), 64–83 (2006)CrossRefGoogle Scholar
  15. 15.
    Neumayer, S., Zussman, G., Cohen, R., Modiano, E.: Assessing the Impact of Geographically Correlated Network Failures. In: IEEE MILCOM 2008 (2008)Google Scholar
  16. 16.
    Neumayer, S., Modiano, E.: Network Reliability With Geographically Correlated Failures. In: IEEE INFOCOM 2010, San Diego, CA, pp. 1–9 (2010)Google Scholar
  17. 17.
    Agarwal, P.K., Efrat, A., Ganjugunte, S., Hay, D., Sankararaman, S., Zussman, G.: The Resilience of WDM Networks to Probabilistic Geographical Failures (2011)Google Scholar
  18. 18.
    Bassiri, B., Heydari, S.S.: Network Survivability in Large-Scale Regional Failure Scenarios. In: C 3 S 2 E 2009, Montreal, QC, Canada (2009)Google Scholar
  19. 19.
    The DIMES project,
  20. 20.

Copyright information

© IFIP International Federation for Information Processing 2011

Authors and Affiliations

  • Wei Peng
    • 1
  • Zimu Li
    • 2
  • Jinshu Su
    • 1
  • Muwei Dong
    • 1
  1. 1.School of ComputerNational University of Defense TechnologyChangshaChina
  2. 2.Network Research CenterTsinghua UniversityBeijingChina

Personalised recommendations